Metamath Proof Explorer


Theorem signstfval

Description: Value of the zero-skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙=a101,b101ifb=0ab
signsv.w W=Basendx101+ndx˙
signsv.t T=fWordn0..^fWi=0nsgnfi
signsv.v V=fWordj1..^fifTfjTfj110
Assertion signstfval FWordN0..^FTFN=Wi=0NsgnFi

Proof

Step Hyp Ref Expression
1 signsv.p ˙=a101,b101ifb=0ab
2 signsv.w W=Basendx101+ndx˙
3 signsv.t T=fWordn0..^fWi=0nsgnfi
4 signsv.v V=fWordj1..^fifTfjTfj110
5 1 2 3 4 signstfv FWordTF=n0..^FWi=0nsgnFi
6 5 adantr FWordN0..^FTF=n0..^FWi=0nsgnFi
7 simpr FWordN0..^Fn=Nn=N
8 7 oveq2d FWordN0..^Fn=N0n=0N
9 8 mpteq1d FWordN0..^Fn=Ni0nsgnFi=i0NsgnFi
10 9 oveq2d FWordN0..^Fn=NWi=0nsgnFi=Wi=0NsgnFi
11 simpr FWordN0..^FN0..^F
12 ovexd FWordN0..^FWi=0NsgnFiV
13 6 10 11 12 fvmptd FWordN0..^FTFN=Wi=0NsgnFi