Metamath Proof Explorer


Theorem signstcl

Description: Closure of the zero skipping sign word. (Contributed by Thierry Arnoux, 9-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
signsv.w W = Base ndx 1 0 1 + ndx ˙
signsv.t T = f Word n 0 ..^ f W i = 0 n sgn f i
signsv.v V = f Word j 1 ..^ f if T f j T f j 1 1 0
Assertion signstcl F Word N 0 ..^ F T F N 1 0 1

Proof

Step Hyp Ref Expression
1 signsv.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
2 signsv.w W = Base ndx 1 0 1 + ndx ˙
3 signsv.t T = f Word n 0 ..^ f W i = 0 n sgn f i
4 signsv.v V = f Word j 1 ..^ f if T f j T f j 1 1 0
5 1 2 3 4 signstfval F Word N 0 ..^ F T F N = W i = 0 N sgn F i
6 1 2 signswbase 1 0 1 = Base W
7 1 2 signswmnd W Mnd
8 7 a1i F Word N 0 ..^ F W Mnd
9 fzo0ssnn0 0 ..^ F 0
10 nn0uz 0 = 0
11 9 10 sseqtri 0 ..^ F 0
12 11 a1i F Word 0 ..^ F 0
13 12 sselda F Word N 0 ..^ F N 0
14 wrdf F Word F : 0 ..^ F
15 14 ad2antrr F Word N 0 ..^ F i 0 N F : 0 ..^ F
16 fzssfzo N 0 ..^ F 0 N 0 ..^ F
17 16 adantl F Word N 0 ..^ F 0 N 0 ..^ F
18 17 sselda F Word N 0 ..^ F i 0 N i 0 ..^ F
19 15 18 ffvelrnd F Word N 0 ..^ F i 0 N F i
20 19 rexrd F Word N 0 ..^ F i 0 N F i *
21 sgncl F i * sgn F i 1 0 1
22 20 21 syl F Word N 0 ..^ F i 0 N sgn F i 1 0 1
23 6 8 13 22 gsumncl F Word N 0 ..^ F W i = 0 N sgn F i 1 0 1
24 5 23 eqeltrd F Word N 0 ..^ F T F N 1 0 1