Metamath Proof Explorer


Theorem signstf

Description: The zero skipping sign word is a word. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
signsv.w W = Base ndx 1 0 1 + ndx ˙
signsv.t T = f Word n 0 ..^ f W i = 0 n sgn f i
signsv.v V = f Word j 1 ..^ f if T f j T f j 1 1 0
Assertion signstf F Word T F Word

Proof

Step Hyp Ref Expression
1 signsv.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
2 signsv.w W = Base ndx 1 0 1 + ndx ˙
3 signsv.t T = f Word n 0 ..^ f W i = 0 n sgn f i
4 signsv.v V = f Word j 1 ..^ f if T f j T f j 1 1 0
5 1 2 3 4 signstfv F Word T F = n 0 ..^ F W i = 0 n sgn F i
6 neg1rr 1
7 0re 0
8 1re 1
9 tpssi 1 0 1 1 0 1
10 6 7 8 9 mp3an 1 0 1
11 1 2 signswbase 1 0 1 = Base W
12 1 2 signswmnd W Mnd
13 12 a1i F Word n 0 ..^ F W Mnd
14 fzo0ssnn0 0 ..^ F 0
15 nn0uz 0 = 0
16 14 15 sseqtri 0 ..^ F 0
17 16 a1i F Word 0 ..^ F 0
18 17 sselda F Word n 0 ..^ F n 0
19 wrdf F Word F : 0 ..^ F
20 19 ad2antrr F Word n 0 ..^ F i 0 n F : 0 ..^ F
21 fzssfzo n 0 ..^ F 0 n 0 ..^ F
22 21 adantl F Word n 0 ..^ F 0 n 0 ..^ F
23 22 sselda F Word n 0 ..^ F i 0 n i 0 ..^ F
24 20 23 ffvelrnd F Word n 0 ..^ F i 0 n F i
25 24 rexrd F Word n 0 ..^ F i 0 n F i *
26 sgncl F i * sgn F i 1 0 1
27 25 26 syl F Word n 0 ..^ F i 0 n sgn F i 1 0 1
28 11 13 18 27 gsumncl F Word n 0 ..^ F W i = 0 n sgn F i 1 0 1
29 10 28 sselid F Word n 0 ..^ F W i = 0 n sgn F i
30 5 29 fmpt3d F Word T F : 0 ..^ F
31 iswrdi T F : 0 ..^ F T F Word
32 30 31 syl F Word T F Word