Metamath Proof Explorer


Theorem signstlen

Description: Length of the zero skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
signsv.w W = Base ndx 1 0 1 + ndx ˙
signsv.t T = f Word n 0 ..^ f W i = 0 n sgn f i
signsv.v V = f Word j 1 ..^ f if T f j T f j 1 1 0
Assertion signstlen F Word T F = F

Proof

Step Hyp Ref Expression
1 signsv.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
2 signsv.w W = Base ndx 1 0 1 + ndx ˙
3 signsv.t T = f Word n 0 ..^ f W i = 0 n sgn f i
4 signsv.v V = f Word j 1 ..^ f if T f j T f j 1 1 0
5 ovex W i = 0 n sgn F i V
6 eqid n 0 ..^ F W i = 0 n sgn F i = n 0 ..^ F W i = 0 n sgn F i
7 5 6 fnmpti n 0 ..^ F W i = 0 n sgn F i Fn 0 ..^ F
8 1 2 3 4 signstfv F Word T F = n 0 ..^ F W i = 0 n sgn F i
9 8 fneq1d F Word T F Fn 0 ..^ F n 0 ..^ F W i = 0 n sgn F i Fn 0 ..^ F
10 7 9 mpbiri F Word T F Fn 0 ..^ F
11 hashfn T F Fn 0 ..^ F T F = 0 ..^ F
12 10 11 syl F Word T F = 0 ..^ F
13 lencl F Word F 0
14 hashfzo0 F 0 0 ..^ F = F
15 13 14 syl F Word 0 ..^ F = F
16 12 15 eqtrd F Word T F = F