Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Descartes's rule of signs
Counting sign changes in a word over real numbers
signstlen
Next ⟩
signstf0
Metamath Proof Explorer
Ascii
Unicode
Theorem
signstlen
Description:
Length of the zero skipping sign word.
(Contributed by
Thierry Arnoux
, 8-Oct-2018)
Ref
Expression
Hypotheses
signsv.p
⊢
⨣
˙
=
a
∈
−
1
0
1
,
b
∈
−
1
0
1
⟼
if
b
=
0
a
b
signsv.w
⊢
W
=
Base
ndx
−
1
0
1
+
ndx
⨣
˙
signsv.t
⊢
T
=
f
∈
Word
ℝ
⟼
n
∈
0
..^
f
⟼
∑
W
i
=
0
n
sgn
⁡
f
⁡
i
signsv.v
⊢
V
=
f
∈
Word
ℝ
⟼
∑
j
∈
1
..^
f
if
T
⁡
f
⁡
j
≠
T
⁡
f
⁡
j
−
1
1
0
Assertion
signstlen
⊢
F
∈
Word
ℝ
→
T
⁡
F
=
F
Proof
Step
Hyp
Ref
Expression
1
signsv.p
⊢
⨣
˙
=
a
∈
−
1
0
1
,
b
∈
−
1
0
1
⟼
if
b
=
0
a
b
2
signsv.w
⊢
W
=
Base
ndx
−
1
0
1
+
ndx
⨣
˙
3
signsv.t
⊢
T
=
f
∈
Word
ℝ
⟼
n
∈
0
..^
f
⟼
∑
W
i
=
0
n
sgn
⁡
f
⁡
i
4
signsv.v
⊢
V
=
f
∈
Word
ℝ
⟼
∑
j
∈
1
..^
f
if
T
⁡
f
⁡
j
≠
T
⁡
f
⁡
j
−
1
1
0
5
ovex
⊢
∑
W
i
=
0
n
sgn
⁡
F
⁡
i
∈
V
6
eqid
⊢
n
∈
0
..^
F
⟼
∑
W
i
=
0
n
sgn
⁡
F
⁡
i
=
n
∈
0
..^
F
⟼
∑
W
i
=
0
n
sgn
⁡
F
⁡
i
7
5
6
fnmpti
⊢
n
∈
0
..^
F
⟼
∑
W
i
=
0
n
sgn
⁡
F
⁡
i
Fn
0
..^
F
8
1
2
3
4
signstfv
⊢
F
∈
Word
ℝ
→
T
⁡
F
=
n
∈
0
..^
F
⟼
∑
W
i
=
0
n
sgn
⁡
F
⁡
i
9
8
fneq1d
⊢
F
∈
Word
ℝ
→
T
⁡
F
Fn
0
..^
F
↔
n
∈
0
..^
F
⟼
∑
W
i
=
0
n
sgn
⁡
F
⁡
i
Fn
0
..^
F
10
7
9
mpbiri
⊢
F
∈
Word
ℝ
→
T
⁡
F
Fn
0
..^
F
11
hashfn
⊢
T
⁡
F
Fn
0
..^
F
→
T
⁡
F
=
0
..^
F
12
10
11
syl
⊢
F
∈
Word
ℝ
→
T
⁡
F
=
0
..^
F
13
lencl
⊢
F
∈
Word
ℝ
→
F
∈
ℕ
0
14
hashfzo0
⊢
F
∈
ℕ
0
→
0
..^
F
=
F
15
13
14
syl
⊢
F
∈
Word
ℝ
→
0
..^
F
=
F
16
12
15
eqtrd
⊢
F
∈
Word
ℝ
→
T
⁡
F
=
F