Metamath Proof Explorer


Theorem signstf0

Description: Sign of a single letter word. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙=a101,b101ifb=0ab
signsv.w W=Basendx101+ndx˙
signsv.t T=fWordn0..^fWi=0nsgnfi
signsv.v V=fWordj1..^fifTfjTfj110
Assertion signstf0 KT⟨“K”⟩=⟨“sgnK”⟩

Proof

Step Hyp Ref Expression
1 signsv.p ˙=a101,b101ifb=0ab
2 signsv.w W=Basendx101+ndx˙
3 signsv.t T=fWordn0..^fWi=0nsgnfi
4 signsv.v V=fWordj1..^fifTfjTfj110
5 s1len ⟨“K”⟩=1
6 5 oveq2i 0..^⟨“K”⟩=0..^1
7 fzo01 0..^1=0
8 6 7 eqtri 0..^⟨“K”⟩=0
9 8 a1i K0..^⟨“K”⟩=0
10 simpr Kn0..^⟨“K”⟩n0..^⟨“K”⟩
11 10 8 eleqtrdi Kn0..^⟨“K”⟩n0
12 velsn n0n=0
13 11 12 sylib Kn0..^⟨“K”⟩n=0
14 oveq2 n=00n=00
15 0z 0
16 fzsn 000=0
17 15 16 ax-mp 00=0
18 14 17 eqtrdi n=00n=0
19 18 mpteq1d n=0i0nsgn⟨“K”⟩i=i0sgn⟨“K”⟩i
20 19 oveq2d n=0Wi=0nsgn⟨“K”⟩i=Wi0sgn⟨“K”⟩i
21 20 adantl Kn=0Wi=0nsgn⟨“K”⟩i=Wi0sgn⟨“K”⟩i
22 1 2 signswmnd WMnd
23 22 a1i KWMnd
24 0re 0
25 24 a1i K0
26 s1fv K⟨“K”⟩0=K
27 id KK
28 26 27 eqeltrd K⟨“K”⟩0
29 28 rexrd K⟨“K”⟩0*
30 sgncl ⟨“K”⟩0*sgn⟨“K”⟩0101
31 29 30 syl Ksgn⟨“K”⟩0101
32 1 2 signswbase 101=BaseW
33 2fveq3 i=0sgn⟨“K”⟩i=sgn⟨“K”⟩0
34 32 33 gsumsn WMnd0sgn⟨“K”⟩0101Wi0sgn⟨“K”⟩i=sgn⟨“K”⟩0
35 23 25 31 34 syl3anc KWi0sgn⟨“K”⟩i=sgn⟨“K”⟩0
36 35 adantr Kn=0Wi0sgn⟨“K”⟩i=sgn⟨“K”⟩0
37 26 fveq2d Ksgn⟨“K”⟩0=sgnK
38 37 adantr Kn=0sgn⟨“K”⟩0=sgnK
39 21 36 38 3eqtrd Kn=0Wi=0nsgn⟨“K”⟩i=sgnK
40 13 39 syldan Kn0..^⟨“K”⟩Wi=0nsgn⟨“K”⟩i=sgnK
41 9 40 mpteq12dva Kn0..^⟨“K”⟩Wi=0nsgn⟨“K”⟩i=n0sgnK
42 s1cl K⟨“K”⟩Word
43 1 2 3 4 signstfv ⟨“K”⟩WordT⟨“K”⟩=n0..^⟨“K”⟩Wi=0nsgn⟨“K”⟩i
44 42 43 syl KT⟨“K”⟩=n0..^⟨“K”⟩Wi=0nsgn⟨“K”⟩i
45 sgnclre KsgnK
46 s1val sgnK⟨“sgnK”⟩=0sgnK
47 45 46 syl K⟨“sgnK”⟩=0sgnK
48 fmptsn 0sgnK0sgnK=n0sgnK
49 24 45 48 sylancr K0sgnK=n0sgnK
50 47 49 eqtrd K⟨“sgnK”⟩=n0sgnK
51 41 44 50 3eqtr4d KT⟨“K”⟩=⟨“sgnK”⟩