| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | signsv.w | ⊢ 𝑊  =  { 〈 ( Base ‘ ndx ) ,  { - 1 ,  0 ,  1 } 〉 ,  〈 ( +g ‘ ndx ) ,   ⨣  〉 } | 
						
							| 3 |  | signsv.t | ⊢ 𝑇  =  ( 𝑓  ∈  Word  ℝ  ↦  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  ↦  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v | ⊢ 𝑉  =  ( 𝑓  ∈  Word  ℝ  ↦  Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) ) | 
						
							| 5 |  | s1len | ⊢ ( ♯ ‘ 〈“ 𝐾 ”〉 )  =  1 | 
						
							| 6 | 5 | oveq2i | ⊢ ( 0 ..^ ( ♯ ‘ 〈“ 𝐾 ”〉 ) )  =  ( 0 ..^ 1 ) | 
						
							| 7 |  | fzo01 | ⊢ ( 0 ..^ 1 )  =  { 0 } | 
						
							| 8 | 6 7 | eqtri | ⊢ ( 0 ..^ ( ♯ ‘ 〈“ 𝐾 ”〉 ) )  =  { 0 } | 
						
							| 9 | 8 | a1i | ⊢ ( 𝐾  ∈  ℝ  →  ( 0 ..^ ( ♯ ‘ 〈“ 𝐾 ”〉 ) )  =  { 0 } ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝐾  ∈  ℝ  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 〈“ 𝐾 ”〉 ) ) )  →  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 〈“ 𝐾 ”〉 ) ) ) | 
						
							| 11 | 10 8 | eleqtrdi | ⊢ ( ( 𝐾  ∈  ℝ  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 〈“ 𝐾 ”〉 ) ) )  →  𝑛  ∈  { 0 } ) | 
						
							| 12 |  | velsn | ⊢ ( 𝑛  ∈  { 0 }  ↔  𝑛  =  0 ) | 
						
							| 13 | 11 12 | sylib | ⊢ ( ( 𝐾  ∈  ℝ  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 〈“ 𝐾 ”〉 ) ) )  →  𝑛  =  0 ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑛  =  0  →  ( 0 ... 𝑛 )  =  ( 0 ... 0 ) ) | 
						
							| 15 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 16 |  | fzsn | ⊢ ( 0  ∈  ℤ  →  ( 0 ... 0 )  =  { 0 } ) | 
						
							| 17 | 15 16 | ax-mp | ⊢ ( 0 ... 0 )  =  { 0 } | 
						
							| 18 | 14 17 | eqtrdi | ⊢ ( 𝑛  =  0  →  ( 0 ... 𝑛 )  =  { 0 } ) | 
						
							| 19 | 18 | mpteq1d | ⊢ ( 𝑛  =  0  →  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 𝑖 ) ) )  =  ( 𝑖  ∈  { 0 }  ↦  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 𝑖 ) ) ) ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( 𝑛  =  0  →  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 𝑖 ) ) ) )  =  ( 𝑊  Σg  ( 𝑖  ∈  { 0 }  ↦  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 𝑖 ) ) ) ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝐾  ∈  ℝ  ∧  𝑛  =  0 )  →  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 𝑖 ) ) ) )  =  ( 𝑊  Σg  ( 𝑖  ∈  { 0 }  ↦  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 𝑖 ) ) ) ) ) | 
						
							| 22 | 1 2 | signswmnd | ⊢ 𝑊  ∈  Mnd | 
						
							| 23 | 22 | a1i | ⊢ ( 𝐾  ∈  ℝ  →  𝑊  ∈  Mnd ) | 
						
							| 24 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 25 | 24 | a1i | ⊢ ( 𝐾  ∈  ℝ  →  0  ∈  ℝ ) | 
						
							| 26 |  | s1fv | ⊢ ( 𝐾  ∈  ℝ  →  ( 〈“ 𝐾 ”〉 ‘ 0 )  =  𝐾 ) | 
						
							| 27 |  | id | ⊢ ( 𝐾  ∈  ℝ  →  𝐾  ∈  ℝ ) | 
						
							| 28 | 26 27 | eqeltrd | ⊢ ( 𝐾  ∈  ℝ  →  ( 〈“ 𝐾 ”〉 ‘ 0 )  ∈  ℝ ) | 
						
							| 29 | 28 | rexrd | ⊢ ( 𝐾  ∈  ℝ  →  ( 〈“ 𝐾 ”〉 ‘ 0 )  ∈  ℝ* ) | 
						
							| 30 |  | sgncl | ⊢ ( ( 〈“ 𝐾 ”〉 ‘ 0 )  ∈  ℝ*  →  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 0 ) )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 31 | 29 30 | syl | ⊢ ( 𝐾  ∈  ℝ  →  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 0 ) )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 32 | 1 2 | signswbase | ⊢ { - 1 ,  0 ,  1 }  =  ( Base ‘ 𝑊 ) | 
						
							| 33 |  | 2fveq3 | ⊢ ( 𝑖  =  0  →  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 𝑖 ) )  =  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 0 ) ) ) | 
						
							| 34 | 32 33 | gsumsn | ⊢ ( ( 𝑊  ∈  Mnd  ∧  0  ∈  ℝ  ∧  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 0 ) )  ∈  { - 1 ,  0 ,  1 } )  →  ( 𝑊  Σg  ( 𝑖  ∈  { 0 }  ↦  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 𝑖 ) ) ) )  =  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 0 ) ) ) | 
						
							| 35 | 23 25 31 34 | syl3anc | ⊢ ( 𝐾  ∈  ℝ  →  ( 𝑊  Σg  ( 𝑖  ∈  { 0 }  ↦  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 𝑖 ) ) ) )  =  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 0 ) ) ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝐾  ∈  ℝ  ∧  𝑛  =  0 )  →  ( 𝑊  Σg  ( 𝑖  ∈  { 0 }  ↦  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 𝑖 ) ) ) )  =  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 0 ) ) ) | 
						
							| 37 | 26 | fveq2d | ⊢ ( 𝐾  ∈  ℝ  →  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 0 ) )  =  ( sgn ‘ 𝐾 ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝐾  ∈  ℝ  ∧  𝑛  =  0 )  →  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 0 ) )  =  ( sgn ‘ 𝐾 ) ) | 
						
							| 39 | 21 36 38 | 3eqtrd | ⊢ ( ( 𝐾  ∈  ℝ  ∧  𝑛  =  0 )  →  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 𝑖 ) ) ) )  =  ( sgn ‘ 𝐾 ) ) | 
						
							| 40 | 13 39 | syldan | ⊢ ( ( 𝐾  ∈  ℝ  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 〈“ 𝐾 ”〉 ) ) )  →  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 𝑖 ) ) ) )  =  ( sgn ‘ 𝐾 ) ) | 
						
							| 41 | 9 40 | mpteq12dva | ⊢ ( 𝐾  ∈  ℝ  →  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 〈“ 𝐾 ”〉 ) )  ↦  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 𝑖 ) ) ) ) )  =  ( 𝑛  ∈  { 0 }  ↦  ( sgn ‘ 𝐾 ) ) ) | 
						
							| 42 |  | s1cl | ⊢ ( 𝐾  ∈  ℝ  →  〈“ 𝐾 ”〉  ∈  Word  ℝ ) | 
						
							| 43 | 1 2 3 4 | signstfv | ⊢ ( 〈“ 𝐾 ”〉  ∈  Word  ℝ  →  ( 𝑇 ‘ 〈“ 𝐾 ”〉 )  =  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 〈“ 𝐾 ”〉 ) )  ↦  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 44 | 42 43 | syl | ⊢ ( 𝐾  ∈  ℝ  →  ( 𝑇 ‘ 〈“ 𝐾 ”〉 )  =  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 〈“ 𝐾 ”〉 ) )  ↦  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 〈“ 𝐾 ”〉 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 45 |  | sgnclre | ⊢ ( 𝐾  ∈  ℝ  →  ( sgn ‘ 𝐾 )  ∈  ℝ ) | 
						
							| 46 |  | s1val | ⊢ ( ( sgn ‘ 𝐾 )  ∈  ℝ  →  〈“ ( sgn ‘ 𝐾 ) ”〉  =  { 〈 0 ,  ( sgn ‘ 𝐾 ) 〉 } ) | 
						
							| 47 | 45 46 | syl | ⊢ ( 𝐾  ∈  ℝ  →  〈“ ( sgn ‘ 𝐾 ) ”〉  =  { 〈 0 ,  ( sgn ‘ 𝐾 ) 〉 } ) | 
						
							| 48 |  | fmptsn | ⊢ ( ( 0  ∈  ℝ  ∧  ( sgn ‘ 𝐾 )  ∈  ℝ )  →  { 〈 0 ,  ( sgn ‘ 𝐾 ) 〉 }  =  ( 𝑛  ∈  { 0 }  ↦  ( sgn ‘ 𝐾 ) ) ) | 
						
							| 49 | 24 45 48 | sylancr | ⊢ ( 𝐾  ∈  ℝ  →  { 〈 0 ,  ( sgn ‘ 𝐾 ) 〉 }  =  ( 𝑛  ∈  { 0 }  ↦  ( sgn ‘ 𝐾 ) ) ) | 
						
							| 50 | 47 49 | eqtrd | ⊢ ( 𝐾  ∈  ℝ  →  〈“ ( sgn ‘ 𝐾 ) ”〉  =  ( 𝑛  ∈  { 0 }  ↦  ( sgn ‘ 𝐾 ) ) ) | 
						
							| 51 | 41 44 50 | 3eqtr4d | ⊢ ( 𝐾  ∈  ℝ  →  ( 𝑇 ‘ 〈“ 𝐾 ”〉 )  =  〈“ ( sgn ‘ 𝐾 ) ”〉 ) |