Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
2 |
|
signsv.w |
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
3 |
|
signsv.t |
|- T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) |
4 |
|
signsv.v |
|- V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) |
5 |
|
s1len |
|- ( # ` <" K "> ) = 1 |
6 |
5
|
oveq2i |
|- ( 0 ..^ ( # ` <" K "> ) ) = ( 0 ..^ 1 ) |
7 |
|
fzo01 |
|- ( 0 ..^ 1 ) = { 0 } |
8 |
6 7
|
eqtri |
|- ( 0 ..^ ( # ` <" K "> ) ) = { 0 } |
9 |
8
|
a1i |
|- ( K e. RR -> ( 0 ..^ ( # ` <" K "> ) ) = { 0 } ) |
10 |
|
simpr |
|- ( ( K e. RR /\ n e. ( 0 ..^ ( # ` <" K "> ) ) ) -> n e. ( 0 ..^ ( # ` <" K "> ) ) ) |
11 |
10 8
|
eleqtrdi |
|- ( ( K e. RR /\ n e. ( 0 ..^ ( # ` <" K "> ) ) ) -> n e. { 0 } ) |
12 |
|
velsn |
|- ( n e. { 0 } <-> n = 0 ) |
13 |
11 12
|
sylib |
|- ( ( K e. RR /\ n e. ( 0 ..^ ( # ` <" K "> ) ) ) -> n = 0 ) |
14 |
|
oveq2 |
|- ( n = 0 -> ( 0 ... n ) = ( 0 ... 0 ) ) |
15 |
|
0z |
|- 0 e. ZZ |
16 |
|
fzsn |
|- ( 0 e. ZZ -> ( 0 ... 0 ) = { 0 } ) |
17 |
15 16
|
ax-mp |
|- ( 0 ... 0 ) = { 0 } |
18 |
14 17
|
eqtrdi |
|- ( n = 0 -> ( 0 ... n ) = { 0 } ) |
19 |
18
|
mpteq1d |
|- ( n = 0 -> ( i e. ( 0 ... n ) |-> ( sgn ` ( <" K "> ` i ) ) ) = ( i e. { 0 } |-> ( sgn ` ( <" K "> ` i ) ) ) ) |
20 |
19
|
oveq2d |
|- ( n = 0 -> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( <" K "> ` i ) ) ) ) = ( W gsum ( i e. { 0 } |-> ( sgn ` ( <" K "> ` i ) ) ) ) ) |
21 |
20
|
adantl |
|- ( ( K e. RR /\ n = 0 ) -> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( <" K "> ` i ) ) ) ) = ( W gsum ( i e. { 0 } |-> ( sgn ` ( <" K "> ` i ) ) ) ) ) |
22 |
1 2
|
signswmnd |
|- W e. Mnd |
23 |
22
|
a1i |
|- ( K e. RR -> W e. Mnd ) |
24 |
|
0re |
|- 0 e. RR |
25 |
24
|
a1i |
|- ( K e. RR -> 0 e. RR ) |
26 |
|
s1fv |
|- ( K e. RR -> ( <" K "> ` 0 ) = K ) |
27 |
|
id |
|- ( K e. RR -> K e. RR ) |
28 |
26 27
|
eqeltrd |
|- ( K e. RR -> ( <" K "> ` 0 ) e. RR ) |
29 |
28
|
rexrd |
|- ( K e. RR -> ( <" K "> ` 0 ) e. RR* ) |
30 |
|
sgncl |
|- ( ( <" K "> ` 0 ) e. RR* -> ( sgn ` ( <" K "> ` 0 ) ) e. { -u 1 , 0 , 1 } ) |
31 |
29 30
|
syl |
|- ( K e. RR -> ( sgn ` ( <" K "> ` 0 ) ) e. { -u 1 , 0 , 1 } ) |
32 |
1 2
|
signswbase |
|- { -u 1 , 0 , 1 } = ( Base ` W ) |
33 |
|
2fveq3 |
|- ( i = 0 -> ( sgn ` ( <" K "> ` i ) ) = ( sgn ` ( <" K "> ` 0 ) ) ) |
34 |
32 33
|
gsumsn |
|- ( ( W e. Mnd /\ 0 e. RR /\ ( sgn ` ( <" K "> ` 0 ) ) e. { -u 1 , 0 , 1 } ) -> ( W gsum ( i e. { 0 } |-> ( sgn ` ( <" K "> ` i ) ) ) ) = ( sgn ` ( <" K "> ` 0 ) ) ) |
35 |
23 25 31 34
|
syl3anc |
|- ( K e. RR -> ( W gsum ( i e. { 0 } |-> ( sgn ` ( <" K "> ` i ) ) ) ) = ( sgn ` ( <" K "> ` 0 ) ) ) |
36 |
35
|
adantr |
|- ( ( K e. RR /\ n = 0 ) -> ( W gsum ( i e. { 0 } |-> ( sgn ` ( <" K "> ` i ) ) ) ) = ( sgn ` ( <" K "> ` 0 ) ) ) |
37 |
26
|
fveq2d |
|- ( K e. RR -> ( sgn ` ( <" K "> ` 0 ) ) = ( sgn ` K ) ) |
38 |
37
|
adantr |
|- ( ( K e. RR /\ n = 0 ) -> ( sgn ` ( <" K "> ` 0 ) ) = ( sgn ` K ) ) |
39 |
21 36 38
|
3eqtrd |
|- ( ( K e. RR /\ n = 0 ) -> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( <" K "> ` i ) ) ) ) = ( sgn ` K ) ) |
40 |
13 39
|
syldan |
|- ( ( K e. RR /\ n e. ( 0 ..^ ( # ` <" K "> ) ) ) -> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( <" K "> ` i ) ) ) ) = ( sgn ` K ) ) |
41 |
9 40
|
mpteq12dva |
|- ( K e. RR -> ( n e. ( 0 ..^ ( # ` <" K "> ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( <" K "> ` i ) ) ) ) ) = ( n e. { 0 } |-> ( sgn ` K ) ) ) |
42 |
|
s1cl |
|- ( K e. RR -> <" K "> e. Word RR ) |
43 |
1 2 3 4
|
signstfv |
|- ( <" K "> e. Word RR -> ( T ` <" K "> ) = ( n e. ( 0 ..^ ( # ` <" K "> ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( <" K "> ` i ) ) ) ) ) ) |
44 |
42 43
|
syl |
|- ( K e. RR -> ( T ` <" K "> ) = ( n e. ( 0 ..^ ( # ` <" K "> ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( <" K "> ` i ) ) ) ) ) ) |
45 |
|
sgnclre |
|- ( K e. RR -> ( sgn ` K ) e. RR ) |
46 |
|
s1val |
|- ( ( sgn ` K ) e. RR -> <" ( sgn ` K ) "> = { <. 0 , ( sgn ` K ) >. } ) |
47 |
45 46
|
syl |
|- ( K e. RR -> <" ( sgn ` K ) "> = { <. 0 , ( sgn ` K ) >. } ) |
48 |
|
fmptsn |
|- ( ( 0 e. RR /\ ( sgn ` K ) e. RR ) -> { <. 0 , ( sgn ` K ) >. } = ( n e. { 0 } |-> ( sgn ` K ) ) ) |
49 |
24 45 48
|
sylancr |
|- ( K e. RR -> { <. 0 , ( sgn ` K ) >. } = ( n e. { 0 } |-> ( sgn ` K ) ) ) |
50 |
47 49
|
eqtrd |
|- ( K e. RR -> <" ( sgn ` K ) "> = ( n e. { 0 } |-> ( sgn ` K ) ) ) |
51 |
41 44 50
|
3eqtr4d |
|- ( K e. RR -> ( T ` <" K "> ) = <" ( sgn ` K ) "> ) |