| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p |  |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) | 
						
							| 2 |  | signsv.w |  |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } | 
						
							| 3 |  | signsv.t |  |-  T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v |  |-  V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 5 |  | s1len |  |-  ( # ` <" K "> ) = 1 | 
						
							| 6 | 5 | oveq2i |  |-  ( 0 ..^ ( # ` <" K "> ) ) = ( 0 ..^ 1 ) | 
						
							| 7 |  | fzo01 |  |-  ( 0 ..^ 1 ) = { 0 } | 
						
							| 8 | 6 7 | eqtri |  |-  ( 0 ..^ ( # ` <" K "> ) ) = { 0 } | 
						
							| 9 | 8 | a1i |  |-  ( K e. RR -> ( 0 ..^ ( # ` <" K "> ) ) = { 0 } ) | 
						
							| 10 |  | simpr |  |-  ( ( K e. RR /\ n e. ( 0 ..^ ( # ` <" K "> ) ) ) -> n e. ( 0 ..^ ( # ` <" K "> ) ) ) | 
						
							| 11 | 10 8 | eleqtrdi |  |-  ( ( K e. RR /\ n e. ( 0 ..^ ( # ` <" K "> ) ) ) -> n e. { 0 } ) | 
						
							| 12 |  | velsn |  |-  ( n e. { 0 } <-> n = 0 ) | 
						
							| 13 | 11 12 | sylib |  |-  ( ( K e. RR /\ n e. ( 0 ..^ ( # ` <" K "> ) ) ) -> n = 0 ) | 
						
							| 14 |  | oveq2 |  |-  ( n = 0 -> ( 0 ... n ) = ( 0 ... 0 ) ) | 
						
							| 15 |  | 0z |  |-  0 e. ZZ | 
						
							| 16 |  | fzsn |  |-  ( 0 e. ZZ -> ( 0 ... 0 ) = { 0 } ) | 
						
							| 17 | 15 16 | ax-mp |  |-  ( 0 ... 0 ) = { 0 } | 
						
							| 18 | 14 17 | eqtrdi |  |-  ( n = 0 -> ( 0 ... n ) = { 0 } ) | 
						
							| 19 | 18 | mpteq1d |  |-  ( n = 0 -> ( i e. ( 0 ... n ) |-> ( sgn ` ( <" K "> ` i ) ) ) = ( i e. { 0 } |-> ( sgn ` ( <" K "> ` i ) ) ) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( n = 0 -> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( <" K "> ` i ) ) ) ) = ( W gsum ( i e. { 0 } |-> ( sgn ` ( <" K "> ` i ) ) ) ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( K e. RR /\ n = 0 ) -> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( <" K "> ` i ) ) ) ) = ( W gsum ( i e. { 0 } |-> ( sgn ` ( <" K "> ` i ) ) ) ) ) | 
						
							| 22 | 1 2 | signswmnd |  |-  W e. Mnd | 
						
							| 23 | 22 | a1i |  |-  ( K e. RR -> W e. Mnd ) | 
						
							| 24 |  | 0re |  |-  0 e. RR | 
						
							| 25 | 24 | a1i |  |-  ( K e. RR -> 0 e. RR ) | 
						
							| 26 |  | s1fv |  |-  ( K e. RR -> ( <" K "> ` 0 ) = K ) | 
						
							| 27 |  | id |  |-  ( K e. RR -> K e. RR ) | 
						
							| 28 | 26 27 | eqeltrd |  |-  ( K e. RR -> ( <" K "> ` 0 ) e. RR ) | 
						
							| 29 | 28 | rexrd |  |-  ( K e. RR -> ( <" K "> ` 0 ) e. RR* ) | 
						
							| 30 |  | sgncl |  |-  ( ( <" K "> ` 0 ) e. RR* -> ( sgn ` ( <" K "> ` 0 ) ) e. { -u 1 , 0 , 1 } ) | 
						
							| 31 | 29 30 | syl |  |-  ( K e. RR -> ( sgn ` ( <" K "> ` 0 ) ) e. { -u 1 , 0 , 1 } ) | 
						
							| 32 | 1 2 | signswbase |  |-  { -u 1 , 0 , 1 } = ( Base ` W ) | 
						
							| 33 |  | 2fveq3 |  |-  ( i = 0 -> ( sgn ` ( <" K "> ` i ) ) = ( sgn ` ( <" K "> ` 0 ) ) ) | 
						
							| 34 | 32 33 | gsumsn |  |-  ( ( W e. Mnd /\ 0 e. RR /\ ( sgn ` ( <" K "> ` 0 ) ) e. { -u 1 , 0 , 1 } ) -> ( W gsum ( i e. { 0 } |-> ( sgn ` ( <" K "> ` i ) ) ) ) = ( sgn ` ( <" K "> ` 0 ) ) ) | 
						
							| 35 | 23 25 31 34 | syl3anc |  |-  ( K e. RR -> ( W gsum ( i e. { 0 } |-> ( sgn ` ( <" K "> ` i ) ) ) ) = ( sgn ` ( <" K "> ` 0 ) ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( K e. RR /\ n = 0 ) -> ( W gsum ( i e. { 0 } |-> ( sgn ` ( <" K "> ` i ) ) ) ) = ( sgn ` ( <" K "> ` 0 ) ) ) | 
						
							| 37 | 26 | fveq2d |  |-  ( K e. RR -> ( sgn ` ( <" K "> ` 0 ) ) = ( sgn ` K ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( K e. RR /\ n = 0 ) -> ( sgn ` ( <" K "> ` 0 ) ) = ( sgn ` K ) ) | 
						
							| 39 | 21 36 38 | 3eqtrd |  |-  ( ( K e. RR /\ n = 0 ) -> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( <" K "> ` i ) ) ) ) = ( sgn ` K ) ) | 
						
							| 40 | 13 39 | syldan |  |-  ( ( K e. RR /\ n e. ( 0 ..^ ( # ` <" K "> ) ) ) -> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( <" K "> ` i ) ) ) ) = ( sgn ` K ) ) | 
						
							| 41 | 9 40 | mpteq12dva |  |-  ( K e. RR -> ( n e. ( 0 ..^ ( # ` <" K "> ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( <" K "> ` i ) ) ) ) ) = ( n e. { 0 } |-> ( sgn ` K ) ) ) | 
						
							| 42 |  | s1cl |  |-  ( K e. RR -> <" K "> e. Word RR ) | 
						
							| 43 | 1 2 3 4 | signstfv |  |-  ( <" K "> e. Word RR -> ( T ` <" K "> ) = ( n e. ( 0 ..^ ( # ` <" K "> ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( <" K "> ` i ) ) ) ) ) ) | 
						
							| 44 | 42 43 | syl |  |-  ( K e. RR -> ( T ` <" K "> ) = ( n e. ( 0 ..^ ( # ` <" K "> ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( <" K "> ` i ) ) ) ) ) ) | 
						
							| 45 |  | sgnclre |  |-  ( K e. RR -> ( sgn ` K ) e. RR ) | 
						
							| 46 |  | s1val |  |-  ( ( sgn ` K ) e. RR -> <" ( sgn ` K ) "> = { <. 0 , ( sgn ` K ) >. } ) | 
						
							| 47 | 45 46 | syl |  |-  ( K e. RR -> <" ( sgn ` K ) "> = { <. 0 , ( sgn ` K ) >. } ) | 
						
							| 48 |  | fmptsn |  |-  ( ( 0 e. RR /\ ( sgn ` K ) e. RR ) -> { <. 0 , ( sgn ` K ) >. } = ( n e. { 0 } |-> ( sgn ` K ) ) ) | 
						
							| 49 | 24 45 48 | sylancr |  |-  ( K e. RR -> { <. 0 , ( sgn ` K ) >. } = ( n e. { 0 } |-> ( sgn ` K ) ) ) | 
						
							| 50 | 47 49 | eqtrd |  |-  ( K e. RR -> <" ( sgn ` K ) "> = ( n e. { 0 } |-> ( sgn ` K ) ) ) | 
						
							| 51 | 41 44 50 | 3eqtr4d |  |-  ( K e. RR -> ( T ` <" K "> ) = <" ( sgn ` K ) "> ) |