Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( A e. RR* /\ A = 0 ) -> A = 0 ) |
2 |
1
|
fveq2d |
|- ( ( A e. RR* /\ A = 0 ) -> ( sgn ` A ) = ( sgn ` 0 ) ) |
3 |
|
sgn0 |
|- ( sgn ` 0 ) = 0 |
4 |
2 3
|
eqtrdi |
|- ( ( A e. RR* /\ A = 0 ) -> ( sgn ` A ) = 0 ) |
5 |
|
c0ex |
|- 0 e. _V |
6 |
5
|
tpid2 |
|- 0 e. { -u 1 , 0 , 1 } |
7 |
4 6
|
eqeltrdi |
|- ( ( A e. RR* /\ A = 0 ) -> ( sgn ` A ) e. { -u 1 , 0 , 1 } ) |
8 |
|
sgnn |
|- ( ( A e. RR* /\ A < 0 ) -> ( sgn ` A ) = -u 1 ) |
9 |
|
negex |
|- -u 1 e. _V |
10 |
9
|
tpid1 |
|- -u 1 e. { -u 1 , 0 , 1 } |
11 |
8 10
|
eqeltrdi |
|- ( ( A e. RR* /\ A < 0 ) -> ( sgn ` A ) e. { -u 1 , 0 , 1 } ) |
12 |
11
|
adantlr |
|- ( ( ( A e. RR* /\ A =/= 0 ) /\ A < 0 ) -> ( sgn ` A ) e. { -u 1 , 0 , 1 } ) |
13 |
|
sgnp |
|- ( ( A e. RR* /\ 0 < A ) -> ( sgn ` A ) = 1 ) |
14 |
|
1ex |
|- 1 e. _V |
15 |
14
|
tpid3 |
|- 1 e. { -u 1 , 0 , 1 } |
16 |
13 15
|
eqeltrdi |
|- ( ( A e. RR* /\ 0 < A ) -> ( sgn ` A ) e. { -u 1 , 0 , 1 } ) |
17 |
16
|
adantlr |
|- ( ( ( A e. RR* /\ A =/= 0 ) /\ 0 < A ) -> ( sgn ` A ) e. { -u 1 , 0 , 1 } ) |
18 |
|
0xr |
|- 0 e. RR* |
19 |
|
xrlttri2 |
|- ( ( A e. RR* /\ 0 e. RR* ) -> ( A =/= 0 <-> ( A < 0 \/ 0 < A ) ) ) |
20 |
19
|
biimpa |
|- ( ( ( A e. RR* /\ 0 e. RR* ) /\ A =/= 0 ) -> ( A < 0 \/ 0 < A ) ) |
21 |
18 20
|
mpanl2 |
|- ( ( A e. RR* /\ A =/= 0 ) -> ( A < 0 \/ 0 < A ) ) |
22 |
12 17 21
|
mpjaodan |
|- ( ( A e. RR* /\ A =/= 0 ) -> ( sgn ` A ) e. { -u 1 , 0 , 1 } ) |
23 |
7 22
|
pm2.61dane |
|- ( A e. RR* -> ( sgn ` A ) e. { -u 1 , 0 , 1 } ) |