| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( A e. RR* /\ A = 0 ) -> A = 0 ) |
| 2 |
1
|
fveq2d |
|- ( ( A e. RR* /\ A = 0 ) -> ( sgn ` A ) = ( sgn ` 0 ) ) |
| 3 |
|
sgn0 |
|- ( sgn ` 0 ) = 0 |
| 4 |
2 3
|
eqtrdi |
|- ( ( A e. RR* /\ A = 0 ) -> ( sgn ` A ) = 0 ) |
| 5 |
|
c0ex |
|- 0 e. _V |
| 6 |
5
|
tpid2 |
|- 0 e. { -u 1 , 0 , 1 } |
| 7 |
4 6
|
eqeltrdi |
|- ( ( A e. RR* /\ A = 0 ) -> ( sgn ` A ) e. { -u 1 , 0 , 1 } ) |
| 8 |
|
sgnn |
|- ( ( A e. RR* /\ A < 0 ) -> ( sgn ` A ) = -u 1 ) |
| 9 |
|
negex |
|- -u 1 e. _V |
| 10 |
9
|
tpid1 |
|- -u 1 e. { -u 1 , 0 , 1 } |
| 11 |
8 10
|
eqeltrdi |
|- ( ( A e. RR* /\ A < 0 ) -> ( sgn ` A ) e. { -u 1 , 0 , 1 } ) |
| 12 |
11
|
adantlr |
|- ( ( ( A e. RR* /\ A =/= 0 ) /\ A < 0 ) -> ( sgn ` A ) e. { -u 1 , 0 , 1 } ) |
| 13 |
|
sgnp |
|- ( ( A e. RR* /\ 0 < A ) -> ( sgn ` A ) = 1 ) |
| 14 |
|
1ex |
|- 1 e. _V |
| 15 |
14
|
tpid3 |
|- 1 e. { -u 1 , 0 , 1 } |
| 16 |
13 15
|
eqeltrdi |
|- ( ( A e. RR* /\ 0 < A ) -> ( sgn ` A ) e. { -u 1 , 0 , 1 } ) |
| 17 |
16
|
adantlr |
|- ( ( ( A e. RR* /\ A =/= 0 ) /\ 0 < A ) -> ( sgn ` A ) e. { -u 1 , 0 , 1 } ) |
| 18 |
|
0xr |
|- 0 e. RR* |
| 19 |
|
xrlttri2 |
|- ( ( A e. RR* /\ 0 e. RR* ) -> ( A =/= 0 <-> ( A < 0 \/ 0 < A ) ) ) |
| 20 |
19
|
biimpa |
|- ( ( ( A e. RR* /\ 0 e. RR* ) /\ A =/= 0 ) -> ( A < 0 \/ 0 < A ) ) |
| 21 |
18 20
|
mpanl2 |
|- ( ( A e. RR* /\ A =/= 0 ) -> ( A < 0 \/ 0 < A ) ) |
| 22 |
12 17 21
|
mpjaodan |
|- ( ( A e. RR* /\ A =/= 0 ) -> ( sgn ` A ) e. { -u 1 , 0 , 1 } ) |
| 23 |
7 22
|
pm2.61dane |
|- ( A e. RR* -> ( sgn ` A ) e. { -u 1 , 0 , 1 } ) |