| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( A e. RR* /\ A = 0 ) -> A = 0 ) | 
						
							| 2 | 1 | fveq2d |  |-  ( ( A e. RR* /\ A = 0 ) -> ( sgn ` A ) = ( sgn ` 0 ) ) | 
						
							| 3 |  | sgn0 |  |-  ( sgn ` 0 ) = 0 | 
						
							| 4 | 2 3 | eqtrdi |  |-  ( ( A e. RR* /\ A = 0 ) -> ( sgn ` A ) = 0 ) | 
						
							| 5 |  | c0ex |  |-  0 e. _V | 
						
							| 6 | 5 | tpid2 |  |-  0 e. { -u 1 , 0 , 1 } | 
						
							| 7 | 4 6 | eqeltrdi |  |-  ( ( A e. RR* /\ A = 0 ) -> ( sgn ` A ) e. { -u 1 , 0 , 1 } ) | 
						
							| 8 |  | sgnn |  |-  ( ( A e. RR* /\ A < 0 ) -> ( sgn ` A ) = -u 1 ) | 
						
							| 9 |  | negex |  |-  -u 1 e. _V | 
						
							| 10 | 9 | tpid1 |  |-  -u 1 e. { -u 1 , 0 , 1 } | 
						
							| 11 | 8 10 | eqeltrdi |  |-  ( ( A e. RR* /\ A < 0 ) -> ( sgn ` A ) e. { -u 1 , 0 , 1 } ) | 
						
							| 12 | 11 | adantlr |  |-  ( ( ( A e. RR* /\ A =/= 0 ) /\ A < 0 ) -> ( sgn ` A ) e. { -u 1 , 0 , 1 } ) | 
						
							| 13 |  | sgnp |  |-  ( ( A e. RR* /\ 0 < A ) -> ( sgn ` A ) = 1 ) | 
						
							| 14 |  | 1ex |  |-  1 e. _V | 
						
							| 15 | 14 | tpid3 |  |-  1 e. { -u 1 , 0 , 1 } | 
						
							| 16 | 13 15 | eqeltrdi |  |-  ( ( A e. RR* /\ 0 < A ) -> ( sgn ` A ) e. { -u 1 , 0 , 1 } ) | 
						
							| 17 | 16 | adantlr |  |-  ( ( ( A e. RR* /\ A =/= 0 ) /\ 0 < A ) -> ( sgn ` A ) e. { -u 1 , 0 , 1 } ) | 
						
							| 18 |  | 0xr |  |-  0 e. RR* | 
						
							| 19 |  | xrlttri2 |  |-  ( ( A e. RR* /\ 0 e. RR* ) -> ( A =/= 0 <-> ( A < 0 \/ 0 < A ) ) ) | 
						
							| 20 | 19 | biimpa |  |-  ( ( ( A e. RR* /\ 0 e. RR* ) /\ A =/= 0 ) -> ( A < 0 \/ 0 < A ) ) | 
						
							| 21 | 18 20 | mpanl2 |  |-  ( ( A e. RR* /\ A =/= 0 ) -> ( A < 0 \/ 0 < A ) ) | 
						
							| 22 | 12 17 21 | mpjaodan |  |-  ( ( A e. RR* /\ A =/= 0 ) -> ( sgn ` A ) e. { -u 1 , 0 , 1 } ) | 
						
							| 23 | 7 22 | pm2.61dane |  |-  ( A e. RR* -> ( sgn ` A ) e. { -u 1 , 0 , 1 } ) |