Metamath Proof Explorer


Theorem sgncl

Description: Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018)

Ref Expression
Assertion sgncl A*sgnA101

Proof

Step Hyp Ref Expression
1 simpr A*A=0A=0
2 1 fveq2d A*A=0sgnA=sgn0
3 sgn0 sgn0=0
4 2 3 eqtrdi A*A=0sgnA=0
5 c0ex 0V
6 5 tpid2 0101
7 4 6 eqeltrdi A*A=0sgnA101
8 sgnn A*A<0sgnA=1
9 negex 1V
10 9 tpid1 1101
11 8 10 eqeltrdi A*A<0sgnA101
12 11 adantlr A*A0A<0sgnA101
13 sgnp A*0<AsgnA=1
14 1ex 1V
15 14 tpid3 1101
16 13 15 eqeltrdi A*0<AsgnA101
17 16 adantlr A*A00<AsgnA101
18 0xr 0*
19 xrlttri2 A*0*A0A<00<A
20 19 biimpa A*0*A0A<00<A
21 18 20 mpanl2 A*A0A<00<A
22 12 17 21 mpjaodan A*A0sgnA101
23 7 22 pm2.61dane A*sgnA101