Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 = 0 ) → 𝐴 = 0 ) |
2 |
1
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 = 0 ) → ( sgn ‘ 𝐴 ) = ( sgn ‘ 0 ) ) |
3 |
|
sgn0 |
⊢ ( sgn ‘ 0 ) = 0 |
4 |
2 3
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 = 0 ) → ( sgn ‘ 𝐴 ) = 0 ) |
5 |
|
c0ex |
⊢ 0 ∈ V |
6 |
5
|
tpid2 |
⊢ 0 ∈ { - 1 , 0 , 1 } |
7 |
4 6
|
eqeltrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 = 0 ) → ( sgn ‘ 𝐴 ) ∈ { - 1 , 0 , 1 } ) |
8 |
|
sgnn |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( sgn ‘ 𝐴 ) = - 1 ) |
9 |
|
negex |
⊢ - 1 ∈ V |
10 |
9
|
tpid1 |
⊢ - 1 ∈ { - 1 , 0 , 1 } |
11 |
8 10
|
eqeltrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( sgn ‘ 𝐴 ) ∈ { - 1 , 0 , 1 } ) |
12 |
11
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0 ) ∧ 𝐴 < 0 ) → ( sgn ‘ 𝐴 ) ∈ { - 1 , 0 , 1 } ) |
13 |
|
sgnp |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( sgn ‘ 𝐴 ) = 1 ) |
14 |
|
1ex |
⊢ 1 ∈ V |
15 |
14
|
tpid3 |
⊢ 1 ∈ { - 1 , 0 , 1 } |
16 |
13 15
|
eqeltrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( sgn ‘ 𝐴 ) ∈ { - 1 , 0 , 1 } ) |
17 |
16
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0 ) ∧ 0 < 𝐴 ) → ( sgn ‘ 𝐴 ) ∈ { - 1 , 0 , 1 } ) |
18 |
|
0xr |
⊢ 0 ∈ ℝ* |
19 |
|
xrlttri2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( 𝐴 ≠ 0 ↔ ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) ) |
20 |
19
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 ∈ ℝ* ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) |
21 |
18 20
|
mpanl2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0 ) → ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) |
22 |
12 17 21
|
mpjaodan |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0 ) → ( sgn ‘ 𝐴 ) ∈ { - 1 , 0 , 1 } ) |
23 |
7 22
|
pm2.61dane |
⊢ ( 𝐴 ∈ ℝ* → ( sgn ‘ 𝐴 ) ∈ { - 1 , 0 , 1 } ) |