| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  =  0 )  →  𝐴  =  0 ) | 
						
							| 2 | 1 | fveq2d | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  =  0 )  →  ( sgn ‘ 𝐴 )  =  ( sgn ‘ 0 ) ) | 
						
							| 3 |  | sgn0 | ⊢ ( sgn ‘ 0 )  =  0 | 
						
							| 4 | 2 3 | eqtrdi | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  =  0 )  →  ( sgn ‘ 𝐴 )  =  0 ) | 
						
							| 5 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 6 | 5 | tpid2 | ⊢ 0  ∈  { - 1 ,  0 ,  1 } | 
						
							| 7 | 4 6 | eqeltrdi | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  =  0 )  →  ( sgn ‘ 𝐴 )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 8 |  | sgnn | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  0 )  →  ( sgn ‘ 𝐴 )  =  - 1 ) | 
						
							| 9 |  | negex | ⊢ - 1  ∈  V | 
						
							| 10 | 9 | tpid1 | ⊢ - 1  ∈  { - 1 ,  0 ,  1 } | 
						
							| 11 | 8 10 | eqeltrdi | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  0 )  →  ( sgn ‘ 𝐴 )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 12 | 11 | adantlr | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐴  ≠  0 )  ∧  𝐴  <  0 )  →  ( sgn ‘ 𝐴 )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 13 |  | sgnp | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  <  𝐴 )  →  ( sgn ‘ 𝐴 )  =  1 ) | 
						
							| 14 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 15 | 14 | tpid3 | ⊢ 1  ∈  { - 1 ,  0 ,  1 } | 
						
							| 16 | 13 15 | eqeltrdi | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  <  𝐴 )  →  ( sgn ‘ 𝐴 )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 17 | 16 | adantlr | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐴  ≠  0 )  ∧  0  <  𝐴 )  →  ( sgn ‘ 𝐴 )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 18 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 19 |  | xrlttri2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  ∈  ℝ* )  →  ( 𝐴  ≠  0  ↔  ( 𝐴  <  0  ∨  0  <  𝐴 ) ) ) | 
						
							| 20 | 19 | biimpa | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  0  ∈  ℝ* )  ∧  𝐴  ≠  0 )  →  ( 𝐴  <  0  ∨  0  <  𝐴 ) ) | 
						
							| 21 | 18 20 | mpanl2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  ≠  0 )  →  ( 𝐴  <  0  ∨  0  <  𝐴 ) ) | 
						
							| 22 | 12 17 21 | mpjaodan | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  ≠  0 )  →  ( sgn ‘ 𝐴 )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 23 | 7 22 | pm2.61dane | ⊢ ( 𝐴  ∈  ℝ*  →  ( sgn ‘ 𝐴 )  ∈  { - 1 ,  0 ,  1 } ) |