| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 = 0 ) → 𝐴 = 0 ) |
| 2 |
1
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 = 0 ) → ( sgn ‘ 𝐴 ) = ( sgn ‘ 0 ) ) |
| 3 |
|
sgn0 |
⊢ ( sgn ‘ 0 ) = 0 |
| 4 |
2 3
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 = 0 ) → ( sgn ‘ 𝐴 ) = 0 ) |
| 5 |
|
c0ex |
⊢ 0 ∈ V |
| 6 |
5
|
tpid2 |
⊢ 0 ∈ { - 1 , 0 , 1 } |
| 7 |
4 6
|
eqeltrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 = 0 ) → ( sgn ‘ 𝐴 ) ∈ { - 1 , 0 , 1 } ) |
| 8 |
|
sgnn |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( sgn ‘ 𝐴 ) = - 1 ) |
| 9 |
|
negex |
⊢ - 1 ∈ V |
| 10 |
9
|
tpid1 |
⊢ - 1 ∈ { - 1 , 0 , 1 } |
| 11 |
8 10
|
eqeltrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( sgn ‘ 𝐴 ) ∈ { - 1 , 0 , 1 } ) |
| 12 |
11
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0 ) ∧ 𝐴 < 0 ) → ( sgn ‘ 𝐴 ) ∈ { - 1 , 0 , 1 } ) |
| 13 |
|
sgnp |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( sgn ‘ 𝐴 ) = 1 ) |
| 14 |
|
1ex |
⊢ 1 ∈ V |
| 15 |
14
|
tpid3 |
⊢ 1 ∈ { - 1 , 0 , 1 } |
| 16 |
13 15
|
eqeltrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( sgn ‘ 𝐴 ) ∈ { - 1 , 0 , 1 } ) |
| 17 |
16
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0 ) ∧ 0 < 𝐴 ) → ( sgn ‘ 𝐴 ) ∈ { - 1 , 0 , 1 } ) |
| 18 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 19 |
|
xrlttri2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( 𝐴 ≠ 0 ↔ ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) ) |
| 20 |
19
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 ∈ ℝ* ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) |
| 21 |
18 20
|
mpanl2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0 ) → ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) |
| 22 |
12 17 21
|
mpjaodan |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0 ) → ( sgn ‘ 𝐴 ) ∈ { - 1 , 0 , 1 } ) |
| 23 |
7 22
|
pm2.61dane |
⊢ ( 𝐴 ∈ ℝ* → ( sgn ‘ 𝐴 ) ∈ { - 1 , 0 , 1 } ) |