Description: Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sgnclre | ⊢ ( 𝐴 ∈ ℝ → ( sgn ‘ 𝐴 ) ∈ ℝ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 2 | 0re | ⊢ 0 ∈ ℝ | |
| 3 | 1re | ⊢ 1 ∈ ℝ | |
| 4 | tpssi | ⊢ ( ( - 1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ ) → { - 1 , 0 , 1 } ⊆ ℝ ) | |
| 5 | 1 2 3 4 | mp3an | ⊢ { - 1 , 0 , 1 } ⊆ ℝ | 
| 6 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 7 | sgncl | ⊢ ( 𝐴 ∈ ℝ* → ( sgn ‘ 𝐴 ) ∈ { - 1 , 0 , 1 } ) | |
| 8 | 6 7 | syl | ⊢ ( 𝐴 ∈ ℝ → ( sgn ‘ 𝐴 ) ∈ { - 1 , 0 , 1 } ) | 
| 9 | 5 8 | sselid | ⊢ ( 𝐴 ∈ ℝ → ( sgn ‘ 𝐴 ) ∈ ℝ ) |