Metamath Proof Explorer


Theorem sgnclre

Description: Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018)

Ref Expression
Assertion sgnclre ( 𝐴 ∈ ℝ → ( sgn ‘ 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 neg1rr - 1 ∈ ℝ
2 0re 0 ∈ ℝ
3 1re 1 ∈ ℝ
4 tpssi ( ( - 1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ ) → { - 1 , 0 , 1 } ⊆ ℝ )
5 1 2 3 4 mp3an { - 1 , 0 , 1 } ⊆ ℝ
6 rexr ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* )
7 sgncl ( 𝐴 ∈ ℝ* → ( sgn ‘ 𝐴 ) ∈ { - 1 , 0 , 1 } )
8 6 7 syl ( 𝐴 ∈ ℝ → ( sgn ‘ 𝐴 ) ∈ { - 1 , 0 , 1 } )
9 5 8 sselid ( 𝐴 ∈ ℝ → ( sgn ‘ 𝐴 ) ∈ ℝ )