Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
2 |
1
|
negeq0d |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 = 0 ↔ - 𝐴 = 0 ) ) |
3 |
2
|
bicomd |
⊢ ( 𝐴 ∈ ℝ → ( - 𝐴 = 0 ↔ 𝐴 = 0 ) ) |
4 |
|
eqidd |
⊢ ( ( 𝐴 ∈ ℝ ∧ - 𝐴 = 0 ) → 0 = 0 ) |
5 |
3
|
necon3bbid |
⊢ ( 𝐴 ∈ ℝ → ( ¬ - 𝐴 = 0 ↔ 𝐴 ≠ 0 ) ) |
6 |
5
|
biimpa |
⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ - 𝐴 = 0 ) → 𝐴 ≠ 0 ) |
7 |
|
lt0neg2 |
⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 ↔ - 𝐴 < 0 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 0 < 𝐴 ↔ - 𝐴 < 0 ) ) |
9 |
|
id |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) |
10 |
|
0red |
⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) |
11 |
9 10
|
lttri2d |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≠ 0 ↔ ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) ) |
12 |
11
|
biimpa |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) |
13 |
|
ltnsym2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ¬ ( 𝐴 < 0 ∧ 0 < 𝐴 ) ) |
14 |
10 13
|
mpdan |
⊢ ( 𝐴 ∈ ℝ → ¬ ( 𝐴 < 0 ∧ 0 < 𝐴 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ¬ ( 𝐴 < 0 ∧ 0 < 𝐴 ) ) |
16 |
12 15
|
jca |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 < 0 ∨ 0 < 𝐴 ) ∧ ¬ ( 𝐴 < 0 ∧ 0 < 𝐴 ) ) ) |
17 |
|
pm5.17 |
⊢ ( ( ( 𝐴 < 0 ∨ 0 < 𝐴 ) ∧ ¬ ( 𝐴 < 0 ∧ 0 < 𝐴 ) ) ↔ ( 𝐴 < 0 ↔ ¬ 0 < 𝐴 ) ) |
18 |
16 17
|
sylib |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝐴 < 0 ↔ ¬ 0 < 𝐴 ) ) |
19 |
18
|
con2bid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 0 < 𝐴 ↔ ¬ 𝐴 < 0 ) ) |
20 |
8 19
|
bitr3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( - 𝐴 < 0 ↔ ¬ 𝐴 < 0 ) ) |
21 |
20
|
ifbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → if ( - 𝐴 < 0 , - 1 , 1 ) = if ( ¬ 𝐴 < 0 , - 1 , 1 ) ) |
22 |
|
ifnot |
⊢ if ( ¬ 𝐴 < 0 , - 1 , 1 ) = if ( 𝐴 < 0 , 1 , - 1 ) |
23 |
21 22
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → if ( - 𝐴 < 0 , - 1 , 1 ) = if ( 𝐴 < 0 , 1 , - 1 ) ) |
24 |
6 23
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ - 𝐴 = 0 ) → if ( - 𝐴 < 0 , - 1 , 1 ) = if ( 𝐴 < 0 , 1 , - 1 ) ) |
25 |
3 4 24
|
ifbieq12d2 |
⊢ ( 𝐴 ∈ ℝ → if ( - 𝐴 = 0 , 0 , if ( - 𝐴 < 0 , - 1 , 1 ) ) = if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , 1 , - 1 ) ) ) |
26 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
27 |
|
rexr |
⊢ ( - 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ* ) |
28 |
|
sgnval |
⊢ ( - 𝐴 ∈ ℝ* → ( sgn ‘ - 𝐴 ) = if ( - 𝐴 = 0 , 0 , if ( - 𝐴 < 0 , - 1 , 1 ) ) ) |
29 |
26 27 28
|
3syl |
⊢ ( 𝐴 ∈ ℝ → ( sgn ‘ - 𝐴 ) = if ( - 𝐴 = 0 , 0 , if ( - 𝐴 < 0 , - 1 , 1 ) ) ) |
30 |
|
df-neg |
⊢ - ( sgn ‘ 𝐴 ) = ( 0 − ( sgn ‘ 𝐴 ) ) |
31 |
30
|
a1i |
⊢ ( 𝐴 ∈ ℝ → - ( sgn ‘ 𝐴 ) = ( 0 − ( sgn ‘ 𝐴 ) ) ) |
32 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
33 |
|
sgnval |
⊢ ( 𝐴 ∈ ℝ* → ( sgn ‘ 𝐴 ) = if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) ) |
34 |
32 33
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( sgn ‘ 𝐴 ) = if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) ) |
35 |
34
|
oveq2d |
⊢ ( 𝐴 ∈ ℝ → ( 0 − ( sgn ‘ 𝐴 ) ) = ( 0 − if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) ) ) |
36 |
|
ovif2 |
⊢ ( 0 − if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) ) = if ( 𝐴 = 0 , ( 0 − 0 ) , ( 0 − if ( 𝐴 < 0 , - 1 , 1 ) ) ) |
37 |
|
biid |
⊢ ( 𝐴 = 0 ↔ 𝐴 = 0 ) |
38 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
39 |
|
ovif2 |
⊢ ( 0 − if ( 𝐴 < 0 , - 1 , 1 ) ) = if ( 𝐴 < 0 , ( 0 − - 1 ) , ( 0 − 1 ) ) |
40 |
|
biid |
⊢ ( 𝐴 < 0 ↔ 𝐴 < 0 ) |
41 |
|
0cn |
⊢ 0 ∈ ℂ |
42 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
43 |
41 42
|
subnegi |
⊢ ( 0 − - 1 ) = ( 0 + 1 ) |
44 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
45 |
43 44
|
eqtr2i |
⊢ 1 = ( 0 − - 1 ) |
46 |
|
df-neg |
⊢ - 1 = ( 0 − 1 ) |
47 |
40 45 46
|
ifbieq12i |
⊢ if ( 𝐴 < 0 , 1 , - 1 ) = if ( 𝐴 < 0 , ( 0 − - 1 ) , ( 0 − 1 ) ) |
48 |
39 47
|
eqtr4i |
⊢ ( 0 − if ( 𝐴 < 0 , - 1 , 1 ) ) = if ( 𝐴 < 0 , 1 , - 1 ) |
49 |
37 38 48
|
ifbieq12i |
⊢ if ( 𝐴 = 0 , ( 0 − 0 ) , ( 0 − if ( 𝐴 < 0 , - 1 , 1 ) ) ) = if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , 1 , - 1 ) ) |
50 |
36 49
|
eqtri |
⊢ ( 0 − if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) ) = if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , 1 , - 1 ) ) |
51 |
50
|
a1i |
⊢ ( 𝐴 ∈ ℝ → ( 0 − if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) ) = if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , 1 , - 1 ) ) ) |
52 |
31 35 51
|
3eqtrd |
⊢ ( 𝐴 ∈ ℝ → - ( sgn ‘ 𝐴 ) = if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , 1 , - 1 ) ) ) |
53 |
25 29 52
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℝ → ( sgn ‘ - 𝐴 ) = - ( sgn ‘ 𝐴 ) ) |