| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 2 | 1 | negeq0d | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  =  0  ↔  - 𝐴  =  0 ) ) | 
						
							| 3 | 2 | bicomd | ⊢ ( 𝐴  ∈  ℝ  →  ( - 𝐴  =  0  ↔  𝐴  =  0 ) ) | 
						
							| 4 |  | eqidd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  - 𝐴  =  0 )  →  0  =  0 ) | 
						
							| 5 | 3 | necon3bbid | ⊢ ( 𝐴  ∈  ℝ  →  ( ¬  - 𝐴  =  0  ↔  𝐴  ≠  0 ) ) | 
						
							| 6 | 5 | biimpa | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ¬  - 𝐴  =  0 )  →  𝐴  ≠  0 ) | 
						
							| 7 |  | lt0neg2 | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  <  𝐴  ↔  - 𝐴  <  0 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( 0  <  𝐴  ↔  - 𝐴  <  0 ) ) | 
						
							| 9 |  | id | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ ) | 
						
							| 10 |  | 0red | ⊢ ( 𝐴  ∈  ℝ  →  0  ∈  ℝ ) | 
						
							| 11 | 9 10 | lttri2d | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  ≠  0  ↔  ( 𝐴  <  0  ∨  0  <  𝐴 ) ) ) | 
						
							| 12 | 11 | biimpa | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( 𝐴  <  0  ∨  0  <  𝐴 ) ) | 
						
							| 13 |  | ltnsym2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ∈  ℝ )  →  ¬  ( 𝐴  <  0  ∧  0  <  𝐴 ) ) | 
						
							| 14 | 10 13 | mpdan | ⊢ ( 𝐴  ∈  ℝ  →  ¬  ( 𝐴  <  0  ∧  0  <  𝐴 ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ¬  ( 𝐴  <  0  ∧  0  <  𝐴 ) ) | 
						
							| 16 | 12 15 | jca | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( ( 𝐴  <  0  ∨  0  <  𝐴 )  ∧  ¬  ( 𝐴  <  0  ∧  0  <  𝐴 ) ) ) | 
						
							| 17 |  | pm5.17 | ⊢ ( ( ( 𝐴  <  0  ∨  0  <  𝐴 )  ∧  ¬  ( 𝐴  <  0  ∧  0  <  𝐴 ) )  ↔  ( 𝐴  <  0  ↔  ¬  0  <  𝐴 ) ) | 
						
							| 18 | 16 17 | sylib | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( 𝐴  <  0  ↔  ¬  0  <  𝐴 ) ) | 
						
							| 19 | 18 | con2bid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( 0  <  𝐴  ↔  ¬  𝐴  <  0 ) ) | 
						
							| 20 | 8 19 | bitr3d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( - 𝐴  <  0  ↔  ¬  𝐴  <  0 ) ) | 
						
							| 21 | 20 | ifbid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  if ( - 𝐴  <  0 ,  - 1 ,  1 )  =  if ( ¬  𝐴  <  0 ,  - 1 ,  1 ) ) | 
						
							| 22 |  | ifnot | ⊢ if ( ¬  𝐴  <  0 ,  - 1 ,  1 )  =  if ( 𝐴  <  0 ,  1 ,  - 1 ) | 
						
							| 23 | 21 22 | eqtrdi | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  if ( - 𝐴  <  0 ,  - 1 ,  1 )  =  if ( 𝐴  <  0 ,  1 ,  - 1 ) ) | 
						
							| 24 | 6 23 | syldan | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ¬  - 𝐴  =  0 )  →  if ( - 𝐴  <  0 ,  - 1 ,  1 )  =  if ( 𝐴  <  0 ,  1 ,  - 1 ) ) | 
						
							| 25 | 3 4 24 | ifbieq12d2 | ⊢ ( 𝐴  ∈  ℝ  →  if ( - 𝐴  =  0 ,  0 ,  if ( - 𝐴  <  0 ,  - 1 ,  1 ) )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  1 ,  - 1 ) ) ) | 
						
							| 26 |  | renegcl | ⊢ ( 𝐴  ∈  ℝ  →  - 𝐴  ∈  ℝ ) | 
						
							| 27 |  | rexr | ⊢ ( - 𝐴  ∈  ℝ  →  - 𝐴  ∈  ℝ* ) | 
						
							| 28 |  | sgnval | ⊢ ( - 𝐴  ∈  ℝ*  →  ( sgn ‘ - 𝐴 )  =  if ( - 𝐴  =  0 ,  0 ,  if ( - 𝐴  <  0 ,  - 1 ,  1 ) ) ) | 
						
							| 29 | 26 27 28 | 3syl | ⊢ ( 𝐴  ∈  ℝ  →  ( sgn ‘ - 𝐴 )  =  if ( - 𝐴  =  0 ,  0 ,  if ( - 𝐴  <  0 ,  - 1 ,  1 ) ) ) | 
						
							| 30 |  | df-neg | ⊢ - ( sgn ‘ 𝐴 )  =  ( 0  −  ( sgn ‘ 𝐴 ) ) | 
						
							| 31 | 30 | a1i | ⊢ ( 𝐴  ∈  ℝ  →  - ( sgn ‘ 𝐴 )  =  ( 0  −  ( sgn ‘ 𝐴 ) ) ) | 
						
							| 32 |  | rexr | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ* ) | 
						
							| 33 |  | sgnval | ⊢ ( 𝐴  ∈  ℝ*  →  ( sgn ‘ 𝐴 )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝐴  ∈  ℝ  →  ( sgn ‘ 𝐴 )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) ) | 
						
							| 35 | 34 | oveq2d | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  −  ( sgn ‘ 𝐴 ) )  =  ( 0  −  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) ) ) | 
						
							| 36 |  | ovif2 | ⊢ ( 0  −  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) )  =  if ( 𝐴  =  0 ,  ( 0  −  0 ) ,  ( 0  −  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) ) | 
						
							| 37 |  | biid | ⊢ ( 𝐴  =  0  ↔  𝐴  =  0 ) | 
						
							| 38 |  | 0m0e0 | ⊢ ( 0  −  0 )  =  0 | 
						
							| 39 |  | ovif2 | ⊢ ( 0  −  if ( 𝐴  <  0 ,  - 1 ,  1 ) )  =  if ( 𝐴  <  0 ,  ( 0  −  - 1 ) ,  ( 0  −  1 ) ) | 
						
							| 40 |  | biid | ⊢ ( 𝐴  <  0  ↔  𝐴  <  0 ) | 
						
							| 41 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 42 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 43 | 41 42 | subnegi | ⊢ ( 0  −  - 1 )  =  ( 0  +  1 ) | 
						
							| 44 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 45 | 43 44 | eqtr2i | ⊢ 1  =  ( 0  −  - 1 ) | 
						
							| 46 |  | df-neg | ⊢ - 1  =  ( 0  −  1 ) | 
						
							| 47 | 40 45 46 | ifbieq12i | ⊢ if ( 𝐴  <  0 ,  1 ,  - 1 )  =  if ( 𝐴  <  0 ,  ( 0  −  - 1 ) ,  ( 0  −  1 ) ) | 
						
							| 48 | 39 47 | eqtr4i | ⊢ ( 0  −  if ( 𝐴  <  0 ,  - 1 ,  1 ) )  =  if ( 𝐴  <  0 ,  1 ,  - 1 ) | 
						
							| 49 | 37 38 48 | ifbieq12i | ⊢ if ( 𝐴  =  0 ,  ( 0  −  0 ) ,  ( 0  −  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  1 ,  - 1 ) ) | 
						
							| 50 | 36 49 | eqtri | ⊢ ( 0  −  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  1 ,  - 1 ) ) | 
						
							| 51 | 50 | a1i | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  −  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  1 ,  - 1 ) ) ) | 
						
							| 52 | 31 35 51 | 3eqtrd | ⊢ ( 𝐴  ∈  ℝ  →  - ( sgn ‘ 𝐴 )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  1 ,  - 1 ) ) ) | 
						
							| 53 | 25 29 52 | 3eqtr4d | ⊢ ( 𝐴  ∈  ℝ  →  ( sgn ‘ - 𝐴 )  =  - ( sgn ‘ 𝐴 ) ) |