| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sgn3da.0 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 2 |  | sgn3da.1 | ⊢ ( ( sgn ‘ 𝐴 )  =  0  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 3 |  | sgn3da.2 | ⊢ ( ( sgn ‘ 𝐴 )  =  1  →  ( 𝜓  ↔  𝜃 ) ) | 
						
							| 4 |  | sgn3da.3 | ⊢ ( ( sgn ‘ 𝐴 )  =  - 1  →  ( 𝜓  ↔  𝜏 ) ) | 
						
							| 5 |  | sgn3da.4 | ⊢ ( ( 𝜑  ∧  𝐴  =  0 )  →  𝜒 ) | 
						
							| 6 |  | sgn3da.5 | ⊢ ( ( 𝜑  ∧  0  <  𝐴 )  →  𝜃 ) | 
						
							| 7 |  | sgn3da.6 | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  𝜏 ) | 
						
							| 8 |  | sgnval | ⊢ ( 𝐴  ∈  ℝ*  →  ( sgn ‘ 𝐴 )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) ) | 
						
							| 9 | 1 8 | syl | ⊢ ( 𝜑  →  ( sgn ‘ 𝐴 )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) ) | 
						
							| 10 | 9 | eqeq2d | ⊢ ( 𝜑  →  ( 0  =  ( sgn ‘ 𝐴 )  ↔  0  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) ) ) | 
						
							| 11 | 10 | pm5.32i | ⊢ ( ( 𝜑  ∧  0  =  ( sgn ‘ 𝐴 ) )  ↔  ( 𝜑  ∧  0  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) ) ) | 
						
							| 12 | 2 | eqcoms | ⊢ ( 0  =  ( sgn ‘ 𝐴 )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 13 | 12 | bicomd | ⊢ ( 0  =  ( sgn ‘ 𝐴 )  →  ( 𝜒  ↔  𝜓 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  0  =  ( sgn ‘ 𝐴 ) )  →  ( 𝜒  ↔  𝜓 ) ) | 
						
							| 15 | 11 14 | sylbir | ⊢ ( ( 𝜑  ∧  0  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) )  →  ( 𝜒  ↔  𝜓 ) ) | 
						
							| 16 | 15 | expcom | ⊢ ( 0  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) )  →  ( 𝜑  →  ( 𝜒  ↔  𝜓 ) ) ) | 
						
							| 17 | 16 | pm5.74d | ⊢ ( 0  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) )  →  ( ( 𝜑  →  𝜒 )  ↔  ( 𝜑  →  𝜓 ) ) ) | 
						
							| 18 | 9 | eqeq2d | ⊢ ( 𝜑  →  ( if ( 𝐴  <  0 ,  - 1 ,  1 )  =  ( sgn ‘ 𝐴 )  ↔  if ( 𝐴  <  0 ,  - 1 ,  1 )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) ) ) | 
						
							| 19 | 18 | pm5.32i | ⊢ ( ( 𝜑  ∧  if ( 𝐴  <  0 ,  - 1 ,  1 )  =  ( sgn ‘ 𝐴 ) )  ↔  ( 𝜑  ∧  if ( 𝐴  <  0 ,  - 1 ,  1 )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) ) ) | 
						
							| 20 |  | eqeq1 | ⊢ ( - 1  =  if ( 𝐴  <  0 ,  - 1 ,  1 )  →  ( - 1  =  ( sgn ‘ 𝐴 )  ↔  if ( 𝐴  <  0 ,  - 1 ,  1 )  =  ( sgn ‘ 𝐴 ) ) ) | 
						
							| 21 | 20 | imbi1d | ⊢ ( - 1  =  if ( 𝐴  <  0 ,  - 1 ,  1 )  →  ( ( - 1  =  ( sgn ‘ 𝐴 )  →  ( ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) )  ↔  𝜓 ) )  ↔  ( if ( 𝐴  <  0 ,  - 1 ,  1 )  =  ( sgn ‘ 𝐴 )  →  ( ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) )  ↔  𝜓 ) ) ) ) | 
						
							| 22 |  | eqeq1 | ⊢ ( 1  =  if ( 𝐴  <  0 ,  - 1 ,  1 )  →  ( 1  =  ( sgn ‘ 𝐴 )  ↔  if ( 𝐴  <  0 ,  - 1 ,  1 )  =  ( sgn ‘ 𝐴 ) ) ) | 
						
							| 23 | 22 | imbi1d | ⊢ ( 1  =  if ( 𝐴  <  0 ,  - 1 ,  1 )  →  ( ( 1  =  ( sgn ‘ 𝐴 )  →  ( ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) )  ↔  𝜓 ) )  ↔  ( if ( 𝐴  <  0 ,  - 1 ,  1 )  =  ( sgn ‘ 𝐴 )  →  ( ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) )  ↔  𝜓 ) ) ) ) | 
						
							| 24 | 7 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐴  <  0 )  ∧  ( 𝐴  <  0  →  𝜏 ) )  →  𝜏 ) | 
						
							| 25 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  𝐴  <  0 )  ∧  𝜏  ∧  𝐴  <  0 )  →  𝜏 ) | 
						
							| 26 | 25 | 3expia | ⊢ ( ( ( 𝜑  ∧  𝐴  <  0 )  ∧  𝜏 )  →  ( 𝐴  <  0  →  𝜏 ) ) | 
						
							| 27 | 24 26 | impbida | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( 𝐴  <  0  →  𝜏 )  ↔  𝜏 ) ) | 
						
							| 28 |  | pm3.24 | ⊢ ¬  ( 𝐴  <  0  ∧  ¬  𝐴  <  0 ) | 
						
							| 29 | 28 | pm2.21i | ⊢ ( ( 𝐴  <  0  ∧  ¬  𝐴  <  0 )  →  𝜃 ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝐴  <  0  ∧  ¬  𝐴  <  0 ) )  →  𝜃 ) | 
						
							| 31 | 30 | expr | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ¬  𝐴  <  0  →  𝜃 ) ) | 
						
							| 32 |  | tbtru | ⊢ ( ( ¬  𝐴  <  0  →  𝜃 )  ↔  ( ( ¬  𝐴  <  0  →  𝜃 )  ↔  ⊤ ) ) | 
						
							| 33 | 31 32 | sylib | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ¬  𝐴  <  0  →  𝜃 )  ↔  ⊤ ) ) | 
						
							| 34 | 27 33 | anbi12d | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) )  ↔  ( 𝜏  ∧  ⊤ ) ) ) | 
						
							| 35 |  | ancom | ⊢ ( ( 𝜏  ∧  ⊤ )  ↔  ( ⊤  ∧  𝜏 ) ) | 
						
							| 36 |  | truan | ⊢ ( ( ⊤  ∧  𝜏 )  ↔  𝜏 ) | 
						
							| 37 | 35 36 | bitri | ⊢ ( ( 𝜏  ∧  ⊤ )  ↔  𝜏 ) | 
						
							| 38 | 34 37 | bitrdi | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) )  ↔  𝜏 ) ) | 
						
							| 39 | 38 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝐴  <  0  ∧  - 1  =  ( sgn ‘ 𝐴 ) )  →  ( ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) )  ↔  𝜏 ) ) | 
						
							| 40 | 4 | eqcoms | ⊢ ( - 1  =  ( sgn ‘ 𝐴 )  →  ( 𝜓  ↔  𝜏 ) ) | 
						
							| 41 | 40 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝐴  <  0  ∧  - 1  =  ( sgn ‘ 𝐴 ) )  →  ( 𝜓  ↔  𝜏 ) ) | 
						
							| 42 | 39 41 | bitr4d | ⊢ ( ( 𝜑  ∧  𝐴  <  0  ∧  - 1  =  ( sgn ‘ 𝐴 ) )  →  ( ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) )  ↔  𝜓 ) ) | 
						
							| 43 | 42 | 3expia | ⊢ ( ( 𝜑  ∧  𝐴  <  0 )  →  ( - 1  =  ( sgn ‘ 𝐴 )  →  ( ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) )  ↔  𝜓 ) ) ) | 
						
							| 44 | 7 | 3adant2 | ⊢ ( ( 𝜑  ∧  ¬  𝐴  <  0  ∧  𝐴  <  0 )  →  𝜏 ) | 
						
							| 45 | 44 | 3expia | ⊢ ( ( 𝜑  ∧  ¬  𝐴  <  0 )  →  ( 𝐴  <  0  →  𝜏 ) ) | 
						
							| 46 |  | tbtru | ⊢ ( ( 𝐴  <  0  →  𝜏 )  ↔  ( ( 𝐴  <  0  →  𝜏 )  ↔  ⊤ ) ) | 
						
							| 47 | 45 46 | sylib | ⊢ ( ( 𝜑  ∧  ¬  𝐴  <  0 )  →  ( ( 𝐴  <  0  →  𝜏 )  ↔  ⊤ ) ) | 
						
							| 48 |  | pm3.35 | ⊢ ( ( ¬  𝐴  <  0  ∧  ( ¬  𝐴  <  0  →  𝜃 ) )  →  𝜃 ) | 
						
							| 49 | 48 | adantll | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  <  0 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) )  →  𝜃 ) | 
						
							| 50 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  <  0 )  ∧  𝜃  ∧  ¬  𝐴  <  0 )  →  𝜃 ) | 
						
							| 51 | 50 | 3expia | ⊢ ( ( ( 𝜑  ∧  ¬  𝐴  <  0 )  ∧  𝜃 )  →  ( ¬  𝐴  <  0  →  𝜃 ) ) | 
						
							| 52 | 49 51 | impbida | ⊢ ( ( 𝜑  ∧  ¬  𝐴  <  0 )  →  ( ( ¬  𝐴  <  0  →  𝜃 )  ↔  𝜃 ) ) | 
						
							| 53 | 47 52 | anbi12d | ⊢ ( ( 𝜑  ∧  ¬  𝐴  <  0 )  →  ( ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) )  ↔  ( ⊤  ∧  𝜃 ) ) ) | 
						
							| 54 |  | truan | ⊢ ( ( ⊤  ∧  𝜃 )  ↔  𝜃 ) | 
						
							| 55 | 53 54 | bitrdi | ⊢ ( ( 𝜑  ∧  ¬  𝐴  <  0 )  →  ( ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) )  ↔  𝜃 ) ) | 
						
							| 56 | 55 | 3adant3 | ⊢ ( ( 𝜑  ∧  ¬  𝐴  <  0  ∧  1  =  ( sgn ‘ 𝐴 ) )  →  ( ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) )  ↔  𝜃 ) ) | 
						
							| 57 | 3 | eqcoms | ⊢ ( 1  =  ( sgn ‘ 𝐴 )  →  ( 𝜓  ↔  𝜃 ) ) | 
						
							| 58 | 57 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  ¬  𝐴  <  0  ∧  1  =  ( sgn ‘ 𝐴 ) )  →  ( 𝜓  ↔  𝜃 ) ) | 
						
							| 59 | 56 58 | bitr4d | ⊢ ( ( 𝜑  ∧  ¬  𝐴  <  0  ∧  1  =  ( sgn ‘ 𝐴 ) )  →  ( ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) )  ↔  𝜓 ) ) | 
						
							| 60 | 59 | 3expia | ⊢ ( ( 𝜑  ∧  ¬  𝐴  <  0 )  →  ( 1  =  ( sgn ‘ 𝐴 )  →  ( ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) )  ↔  𝜓 ) ) ) | 
						
							| 61 | 21 23 43 60 | ifbothda | ⊢ ( 𝜑  →  ( if ( 𝐴  <  0 ,  - 1 ,  1 )  =  ( sgn ‘ 𝐴 )  →  ( ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) )  ↔  𝜓 ) ) ) | 
						
							| 62 | 61 | imp | ⊢ ( ( 𝜑  ∧  if ( 𝐴  <  0 ,  - 1 ,  1 )  =  ( sgn ‘ 𝐴 ) )  →  ( ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) )  ↔  𝜓 ) ) | 
						
							| 63 | 19 62 | sylbir | ⊢ ( ( 𝜑  ∧  if ( 𝐴  <  0 ,  - 1 ,  1 )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) )  →  ( ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) )  ↔  𝜓 ) ) | 
						
							| 64 | 63 | expcom | ⊢ ( if ( 𝐴  <  0 ,  - 1 ,  1 )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) )  →  ( 𝜑  →  ( ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) )  ↔  𝜓 ) ) ) | 
						
							| 65 | 64 | pm5.74d | ⊢ ( if ( 𝐴  <  0 ,  - 1 ,  1 )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) )  →  ( ( 𝜑  →  ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) ) )  ↔  ( 𝜑  →  𝜓 ) ) ) | 
						
							| 66 | 5 | expcom | ⊢ ( 𝐴  =  0  →  ( 𝜑  →  𝜒 ) ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( ⊤  ∧  𝐴  =  0 )  →  ( 𝜑  →  𝜒 ) ) | 
						
							| 68 | 7 | ex | ⊢ ( 𝜑  →  ( 𝐴  <  0  →  𝜏 ) ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  0 )  →  ( 𝐴  <  0  →  𝜏 ) ) | 
						
							| 70 |  | simp1 | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  0  ∧  ¬  𝐴  <  0 )  →  𝜑 ) | 
						
							| 71 |  | df-ne | ⊢ ( 𝐴  ≠  0  ↔  ¬  𝐴  =  0 ) | 
						
							| 72 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 73 |  | xrlttri2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  ∈  ℝ* )  →  ( 𝐴  ≠  0  ↔  ( 𝐴  <  0  ∨  0  <  𝐴 ) ) ) | 
						
							| 74 | 1 72 73 | sylancl | ⊢ ( 𝜑  →  ( 𝐴  ≠  0  ↔  ( 𝐴  <  0  ∨  0  <  𝐴 ) ) ) | 
						
							| 75 | 71 74 | bitr3id | ⊢ ( 𝜑  →  ( ¬  𝐴  =  0  ↔  ( 𝐴  <  0  ∨  0  <  𝐴 ) ) ) | 
						
							| 76 | 75 | biimpa | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  0 )  →  ( 𝐴  <  0  ∨  0  <  𝐴 ) ) | 
						
							| 77 | 76 | ord | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  0 )  →  ( ¬  𝐴  <  0  →  0  <  𝐴 ) ) | 
						
							| 78 | 77 | 3impia | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  0  ∧  ¬  𝐴  <  0 )  →  0  <  𝐴 ) | 
						
							| 79 | 70 78 6 | syl2anc | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  0  ∧  ¬  𝐴  <  0 )  →  𝜃 ) | 
						
							| 80 | 79 | 3expia | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  0 )  →  ( ¬  𝐴  <  0  →  𝜃 ) ) | 
						
							| 81 | 69 80 | jca | ⊢ ( ( 𝜑  ∧  ¬  𝐴  =  0 )  →  ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) ) ) | 
						
							| 82 | 81 | expcom | ⊢ ( ¬  𝐴  =  0  →  ( 𝜑  →  ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) ) ) ) | 
						
							| 83 | 82 | adantl | ⊢ ( ( ⊤  ∧  ¬  𝐴  =  0 )  →  ( 𝜑  →  ( ( 𝐴  <  0  →  𝜏 )  ∧  ( ¬  𝐴  <  0  →  𝜃 ) ) ) ) | 
						
							| 84 | 17 65 67 83 | ifbothda | ⊢ ( ⊤  →  ( 𝜑  →  𝜓 ) ) | 
						
							| 85 | 84 | mptru | ⊢ ( 𝜑  →  𝜓 ) |