| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sgn3da.0 |
|
| 2 |
|
sgn3da.1 |
|
| 3 |
|
sgn3da.2 |
|
| 4 |
|
sgn3da.3 |
|
| 5 |
|
sgn3da.4 |
|
| 6 |
|
sgn3da.5 |
|
| 7 |
|
sgn3da.6 |
|
| 8 |
|
sgnval |
|
| 9 |
1 8
|
syl |
|
| 10 |
9
|
eqeq2d |
|
| 11 |
10
|
pm5.32i |
|
| 12 |
2
|
eqcoms |
|
| 13 |
12
|
bicomd |
|
| 14 |
13
|
adantl |
|
| 15 |
11 14
|
sylbir |
|
| 16 |
15
|
expcom |
|
| 17 |
16
|
pm5.74d |
|
| 18 |
9
|
eqeq2d |
|
| 19 |
18
|
pm5.32i |
|
| 20 |
|
eqeq1 |
|
| 21 |
20
|
imbi1d |
|
| 22 |
|
eqeq1 |
|
| 23 |
22
|
imbi1d |
|
| 24 |
7
|
adantr |
|
| 25 |
|
simp2 |
|
| 26 |
25
|
3expia |
|
| 27 |
24 26
|
impbida |
|
| 28 |
|
pm3.24 |
|
| 29 |
28
|
pm2.21i |
|
| 30 |
29
|
adantl |
|
| 31 |
30
|
expr |
|
| 32 |
|
tbtru |
|
| 33 |
31 32
|
sylib |
|
| 34 |
27 33
|
anbi12d |
|
| 35 |
|
ancom |
|
| 36 |
|
truan |
|
| 37 |
35 36
|
bitri |
|
| 38 |
34 37
|
bitrdi |
|
| 39 |
38
|
3adant3 |
|
| 40 |
4
|
eqcoms |
|
| 41 |
40
|
3ad2ant3 |
|
| 42 |
39 41
|
bitr4d |
|
| 43 |
42
|
3expia |
|
| 44 |
7
|
3adant2 |
|
| 45 |
44
|
3expia |
|
| 46 |
|
tbtru |
|
| 47 |
45 46
|
sylib |
|
| 48 |
|
pm3.35 |
|
| 49 |
48
|
adantll |
|
| 50 |
|
simp2 |
|
| 51 |
50
|
3expia |
|
| 52 |
49 51
|
impbida |
|
| 53 |
47 52
|
anbi12d |
|
| 54 |
|
truan |
|
| 55 |
53 54
|
bitrdi |
|
| 56 |
55
|
3adant3 |
|
| 57 |
3
|
eqcoms |
|
| 58 |
57
|
3ad2ant3 |
|
| 59 |
56 58
|
bitr4d |
|
| 60 |
59
|
3expia |
|
| 61 |
21 23 43 60
|
ifbothda |
|
| 62 |
61
|
imp |
|
| 63 |
19 62
|
sylbir |
|
| 64 |
63
|
expcom |
|
| 65 |
64
|
pm5.74d |
|
| 66 |
5
|
expcom |
|
| 67 |
66
|
adantl |
|
| 68 |
7
|
ex |
|
| 69 |
68
|
adantr |
|
| 70 |
|
simp1 |
|
| 71 |
|
df-ne |
|
| 72 |
|
0xr |
|
| 73 |
|
xrlttri2 |
|
| 74 |
1 72 73
|
sylancl |
|
| 75 |
71 74
|
bitr3id |
|
| 76 |
75
|
biimpa |
|
| 77 |
76
|
ord |
|
| 78 |
77
|
3impia |
|
| 79 |
70 78 6
|
syl2anc |
|
| 80 |
79
|
3expia |
|
| 81 |
69 80
|
jca |
|
| 82 |
81
|
expcom |
|
| 83 |
82
|
adantl |
|
| 84 |
17 65 67 83
|
ifbothda |
|
| 85 |
84
|
mptru |
|