Step |
Hyp |
Ref |
Expression |
1 |
|
remulcl |
|
2 |
1
|
rexrd |
|
3 |
|
eqeq1 |
|
4 |
|
eqeq1 |
|
5 |
|
eqeq1 |
|
6 |
|
fveq2 |
|
7 |
|
sgn0 |
|
8 |
6 7
|
eqtrdi |
|
9 |
8
|
oveq1d |
|
10 |
9
|
adantl |
|
11 |
|
sgnclre |
|
12 |
11
|
recnd |
|
13 |
12
|
mul02d |
|
14 |
13
|
ad3antlr |
|
15 |
10 14
|
eqtr2d |
|
16 |
|
fveq2 |
|
17 |
16 7
|
eqtrdi |
|
18 |
17
|
oveq2d |
|
19 |
18
|
adantl |
|
20 |
|
sgnclre |
|
21 |
20
|
recnd |
|
22 |
21
|
mul01d |
|
23 |
22
|
ad3antrrr |
|
24 |
19 23
|
eqtr2d |
|
25 |
|
simpl |
|
26 |
25
|
recnd |
|
27 |
|
simpr |
|
28 |
27
|
recnd |
|
29 |
26 28
|
mul0ord |
|
30 |
29
|
biimpa |
|
31 |
15 24 30
|
mpjaodan |
|
32 |
|
simpll |
|
33 |
32
|
rexrd |
|
34 |
|
oveq1 |
|
35 |
34
|
eqeq2d |
|
36 |
|
oveq1 |
|
37 |
36
|
eqeq2d |
|
38 |
|
oveq1 |
|
39 |
38
|
eqeq2d |
|
40 |
|
simpr |
|
41 |
26
|
adantr |
|
42 |
28
|
adantr |
|
43 |
|
simpr |
|
44 |
43
|
gt0ne0d |
|
45 |
41 42 44
|
mulne0bad |
|
46 |
45
|
neneqd |
|
47 |
46
|
adantr |
|
48 |
40 47
|
pm2.21dd |
|
49 |
27
|
ad2antrr |
|
50 |
49
|
rexrd |
|
51 |
|
simpll |
|
52 |
|
0red |
|
53 |
|
simplll |
|
54 |
|
simpr |
|
55 |
52 53 54
|
ltled |
|
56 |
|
simplr |
|
57 |
|
prodgt0 |
|
58 |
51 55 56 57
|
syl12anc |
|
59 |
|
sgnp |
|
60 |
50 58 59
|
syl2anc |
|
61 |
60
|
oveq2d |
|
62 |
|
1t1e1 |
|
63 |
61 62
|
eqtr2di |
|
64 |
27
|
ad2antrr |
|
65 |
64
|
rexrd |
|
66 |
|
simplll |
|
67 |
66
|
renegcld |
|
68 |
64
|
renegcld |
|
69 |
|
0red |
|
70 |
|
simpr |
|
71 |
25
|
lt0neg1d |
|
72 |
71
|
ad2antrr |
|
73 |
70 72
|
mpbid |
|
74 |
69 67 73
|
ltled |
|
75 |
|
simplr |
|
76 |
26
|
ad2antrr |
|
77 |
28
|
ad2antrr |
|
78 |
76 77
|
mul2negd |
|
79 |
75 78
|
breqtrrd |
|
80 |
|
prodgt0 |
|
81 |
67 68 74 79 80
|
syl22anc |
|
82 |
27
|
lt0neg1d |
|
83 |
82
|
ad2antrr |
|
84 |
81 83
|
mpbird |
|
85 |
|
sgnn |
|
86 |
65 84 85
|
syl2anc |
|
87 |
86
|
oveq2d |
|
88 |
|
neg1mulneg1e1 |
|
89 |
87 88
|
eqtr2di |
|
90 |
33 35 37 39 48 63 89
|
sgn3da |
|
91 |
|
simpll |
|
92 |
91
|
rexrd |
|
93 |
34
|
eqeq2d |
|
94 |
36
|
eqeq2d |
|
95 |
38
|
eqeq2d |
|
96 |
|
simpr |
|
97 |
26
|
ad2antrr |
|
98 |
28
|
ad2antrr |
|
99 |
|
simplr |
|
100 |
99
|
lt0ne0d |
|
101 |
97 98 100
|
mulne0bad |
|
102 |
101
|
neneqd |
|
103 |
96 102
|
pm2.21dd |
|
104 |
27
|
ad2antrr |
|
105 |
104
|
rexrd |
|
106 |
|
simplr |
|
107 |
26 28
|
mulcomd |
|
108 |
107
|
breq1d |
|
109 |
108
|
biimpa |
|
110 |
106 91 109
|
mul2lt0rgt0 |
|
111 |
105 110 85
|
syl2anc |
|
112 |
111
|
oveq2d |
|
113 |
|
neg1cn |
|
114 |
113
|
mulid2i |
|
115 |
112 114
|
eqtr2di |
|
116 |
106
|
adantr |
|
117 |
116
|
rexrd |
|
118 |
106 91 109
|
mul2lt0rlt0 |
|
119 |
117 118 59
|
syl2anc |
|
120 |
119
|
oveq2d |
|
121 |
113
|
mulid1i |
|
122 |
120 121
|
eqtr2di |
|
123 |
92 93 94 95 103 115 122
|
sgn3da |
|
124 |
2 3 4 5 31 90 123
|
sgn3da |
|