Step |
Hyp |
Ref |
Expression |
1 |
|
remulcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
2 |
1
|
rexrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) ∈ ℝ* ) |
3 |
|
eqeq1 |
⊢ ( ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 0 → ( ( sgn ‘ ( 𝐴 · 𝐵 ) ) = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ↔ 0 = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ) ) |
4 |
|
eqeq1 |
⊢ ( ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 1 → ( ( sgn ‘ ( 𝐴 · 𝐵 ) ) = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ↔ 1 = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ) ) |
5 |
|
eqeq1 |
⊢ ( ( sgn ‘ ( 𝐴 · 𝐵 ) ) = - 1 → ( ( sgn ‘ ( 𝐴 · 𝐵 ) ) = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ↔ - 1 = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝐴 = 0 → ( sgn ‘ 𝐴 ) = ( sgn ‘ 0 ) ) |
7 |
|
sgn0 |
⊢ ( sgn ‘ 0 ) = 0 |
8 |
6 7
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( sgn ‘ 𝐴 ) = 0 ) |
9 |
8
|
oveq1d |
⊢ ( 𝐴 = 0 → ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) = ( 0 · ( sgn ‘ 𝐵 ) ) ) |
10 |
9
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) = 0 ) ∧ 𝐴 = 0 ) → ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) = ( 0 · ( sgn ‘ 𝐵 ) ) ) |
11 |
|
sgnclre |
⊢ ( 𝐵 ∈ ℝ → ( sgn ‘ 𝐵 ) ∈ ℝ ) |
12 |
11
|
recnd |
⊢ ( 𝐵 ∈ ℝ → ( sgn ‘ 𝐵 ) ∈ ℂ ) |
13 |
12
|
mul02d |
⊢ ( 𝐵 ∈ ℝ → ( 0 · ( sgn ‘ 𝐵 ) ) = 0 ) |
14 |
13
|
ad3antlr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) = 0 ) ∧ 𝐴 = 0 ) → ( 0 · ( sgn ‘ 𝐵 ) ) = 0 ) |
15 |
10 14
|
eqtr2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) = 0 ) ∧ 𝐴 = 0 ) → 0 = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝐵 = 0 → ( sgn ‘ 𝐵 ) = ( sgn ‘ 0 ) ) |
17 |
16 7
|
eqtrdi |
⊢ ( 𝐵 = 0 → ( sgn ‘ 𝐵 ) = 0 ) |
18 |
17
|
oveq2d |
⊢ ( 𝐵 = 0 → ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) = ( ( sgn ‘ 𝐴 ) · 0 ) ) |
19 |
18
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) = 0 ) ∧ 𝐵 = 0 ) → ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) = ( ( sgn ‘ 𝐴 ) · 0 ) ) |
20 |
|
sgnclre |
⊢ ( 𝐴 ∈ ℝ → ( sgn ‘ 𝐴 ) ∈ ℝ ) |
21 |
20
|
recnd |
⊢ ( 𝐴 ∈ ℝ → ( sgn ‘ 𝐴 ) ∈ ℂ ) |
22 |
21
|
mul01d |
⊢ ( 𝐴 ∈ ℝ → ( ( sgn ‘ 𝐴 ) · 0 ) = 0 ) |
23 |
22
|
ad3antrrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) = 0 ) ∧ 𝐵 = 0 ) → ( ( sgn ‘ 𝐴 ) · 0 ) = 0 ) |
24 |
19 23
|
eqtr2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) = 0 ) ∧ 𝐵 = 0 ) → 0 = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ) |
25 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
26 |
25
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
27 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
28 |
27
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
29 |
26 28
|
mul0ord |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 · 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ) |
30 |
29
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) = 0 ) → ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) |
31 |
15 24 30
|
mpjaodan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) = 0 ) → 0 = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ) |
32 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) → 𝐴 ∈ ℝ ) |
33 |
32
|
rexrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
34 |
|
oveq1 |
⊢ ( ( sgn ‘ 𝐴 ) = 0 → ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) = ( 0 · ( sgn ‘ 𝐵 ) ) ) |
35 |
34
|
eqeq2d |
⊢ ( ( sgn ‘ 𝐴 ) = 0 → ( 1 = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ↔ 1 = ( 0 · ( sgn ‘ 𝐵 ) ) ) ) |
36 |
|
oveq1 |
⊢ ( ( sgn ‘ 𝐴 ) = 1 → ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) = ( 1 · ( sgn ‘ 𝐵 ) ) ) |
37 |
36
|
eqeq2d |
⊢ ( ( sgn ‘ 𝐴 ) = 1 → ( 1 = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ↔ 1 = ( 1 · ( sgn ‘ 𝐵 ) ) ) ) |
38 |
|
oveq1 |
⊢ ( ( sgn ‘ 𝐴 ) = - 1 → ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) = ( - 1 · ( sgn ‘ 𝐵 ) ) ) |
39 |
38
|
eqeq2d |
⊢ ( ( sgn ‘ 𝐴 ) = - 1 → ( 1 = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ↔ 1 = ( - 1 · ( sgn ‘ 𝐵 ) ) ) ) |
40 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 = 0 ) → 𝐴 = 0 ) |
41 |
26
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) → 𝐴 ∈ ℂ ) |
42 |
28
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) → 𝐵 ∈ ℂ ) |
43 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) → 0 < ( 𝐴 · 𝐵 ) ) |
44 |
43
|
gt0ne0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) → ( 𝐴 · 𝐵 ) ≠ 0 ) |
45 |
41 42 44
|
mulne0bad |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) → 𝐴 ≠ 0 ) |
46 |
45
|
neneqd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) → ¬ 𝐴 = 0 ) |
47 |
46
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 = 0 ) → ¬ 𝐴 = 0 ) |
48 |
40 47
|
pm2.21dd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 = 0 ) → 1 = ( 0 · ( sgn ‘ 𝐵 ) ) ) |
49 |
27
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 0 < 𝐴 ) → 𝐵 ∈ ℝ ) |
50 |
49
|
rexrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 0 < 𝐴 ) → 𝐵 ∈ ℝ* ) |
51 |
|
simpll |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 0 < 𝐴 ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
52 |
|
0red |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 0 < 𝐴 ) → 0 ∈ ℝ ) |
53 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ ) |
54 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 0 < 𝐴 ) → 0 < 𝐴 ) |
55 |
52 53 54
|
ltled |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 0 < 𝐴 ) → 0 ≤ 𝐴 ) |
56 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 0 < 𝐴 ) → 0 < ( 𝐴 · 𝐵 ) ) |
57 |
|
prodgt0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 0 < ( 𝐴 · 𝐵 ) ) ) → 0 < 𝐵 ) |
58 |
51 55 56 57
|
syl12anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 0 < 𝐴 ) → 0 < 𝐵 ) |
59 |
|
sgnp |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) → ( sgn ‘ 𝐵 ) = 1 ) |
60 |
50 58 59
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 0 < 𝐴 ) → ( sgn ‘ 𝐵 ) = 1 ) |
61 |
60
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 0 < 𝐴 ) → ( 1 · ( sgn ‘ 𝐵 ) ) = ( 1 · 1 ) ) |
62 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
63 |
61 62
|
eqtr2di |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 0 < 𝐴 ) → 1 = ( 1 · ( sgn ‘ 𝐵 ) ) ) |
64 |
27
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 < 0 ) → 𝐵 ∈ ℝ ) |
65 |
64
|
rexrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 < 0 ) → 𝐵 ∈ ℝ* ) |
66 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 < 0 ) → 𝐴 ∈ ℝ ) |
67 |
66
|
renegcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 < 0 ) → - 𝐴 ∈ ℝ ) |
68 |
64
|
renegcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 < 0 ) → - 𝐵 ∈ ℝ ) |
69 |
|
0red |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 < 0 ) → 0 ∈ ℝ ) |
70 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 < 0 ) → 𝐴 < 0 ) |
71 |
25
|
lt0neg1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) |
72 |
71
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 < 0 ) → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) |
73 |
70 72
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 < 0 ) → 0 < - 𝐴 ) |
74 |
69 67 73
|
ltled |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 < 0 ) → 0 ≤ - 𝐴 ) |
75 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 < 0 ) → 0 < ( 𝐴 · 𝐵 ) ) |
76 |
26
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 < 0 ) → 𝐴 ∈ ℂ ) |
77 |
28
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 < 0 ) → 𝐵 ∈ ℂ ) |
78 |
76 77
|
mul2negd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 < 0 ) → ( - 𝐴 · - 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
79 |
75 78
|
breqtrrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 < 0 ) → 0 < ( - 𝐴 · - 𝐵 ) ) |
80 |
|
prodgt0 |
⊢ ( ( ( - 𝐴 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) ∧ ( 0 ≤ - 𝐴 ∧ 0 < ( - 𝐴 · - 𝐵 ) ) ) → 0 < - 𝐵 ) |
81 |
67 68 74 79 80
|
syl22anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 < 0 ) → 0 < - 𝐵 ) |
82 |
27
|
lt0neg1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < 0 ↔ 0 < - 𝐵 ) ) |
83 |
82
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 < 0 ) → ( 𝐵 < 0 ↔ 0 < - 𝐵 ) ) |
84 |
81 83
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 < 0 ) → 𝐵 < 0 ) |
85 |
|
sgnn |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐵 < 0 ) → ( sgn ‘ 𝐵 ) = - 1 ) |
86 |
65 84 85
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 < 0 ) → ( sgn ‘ 𝐵 ) = - 1 ) |
87 |
86
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 < 0 ) → ( - 1 · ( sgn ‘ 𝐵 ) ) = ( - 1 · - 1 ) ) |
88 |
|
neg1mulneg1e1 |
⊢ ( - 1 · - 1 ) = 1 |
89 |
87 88
|
eqtr2di |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) ∧ 𝐴 < 0 ) → 1 = ( - 1 · ( sgn ‘ 𝐵 ) ) ) |
90 |
33 35 37 39 48 63 89
|
sgn3da |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( 𝐴 · 𝐵 ) ) → 1 = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ) |
91 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) → 𝐴 ∈ ℝ ) |
92 |
91
|
rexrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) → 𝐴 ∈ ℝ* ) |
93 |
34
|
eqeq2d |
⊢ ( ( sgn ‘ 𝐴 ) = 0 → ( - 1 = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ↔ - 1 = ( 0 · ( sgn ‘ 𝐵 ) ) ) ) |
94 |
36
|
eqeq2d |
⊢ ( ( sgn ‘ 𝐴 ) = 1 → ( - 1 = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ↔ - 1 = ( 1 · ( sgn ‘ 𝐵 ) ) ) ) |
95 |
38
|
eqeq2d |
⊢ ( ( sgn ‘ 𝐴 ) = - 1 → ( - 1 = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ↔ - 1 = ( - 1 · ( sgn ‘ 𝐵 ) ) ) ) |
96 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 = 0 ) → 𝐴 = 0 ) |
97 |
26
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 = 0 ) → 𝐴 ∈ ℂ ) |
98 |
28
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 = 0 ) → 𝐵 ∈ ℂ ) |
99 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 = 0 ) → ( 𝐴 · 𝐵 ) < 0 ) |
100 |
99
|
lt0ne0d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 = 0 ) → ( 𝐴 · 𝐵 ) ≠ 0 ) |
101 |
97 98 100
|
mulne0bad |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 = 0 ) → 𝐴 ≠ 0 ) |
102 |
101
|
neneqd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 = 0 ) → ¬ 𝐴 = 0 ) |
103 |
96 102
|
pm2.21dd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 = 0 ) → - 1 = ( 0 · ( sgn ‘ 𝐵 ) ) ) |
104 |
27
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 0 < 𝐴 ) → 𝐵 ∈ ℝ ) |
105 |
104
|
rexrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 0 < 𝐴 ) → 𝐵 ∈ ℝ* ) |
106 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) → 𝐵 ∈ ℝ ) |
107 |
26 28
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
108 |
107
|
breq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 · 𝐵 ) < 0 ↔ ( 𝐵 · 𝐴 ) < 0 ) ) |
109 |
108
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) → ( 𝐵 · 𝐴 ) < 0 ) |
110 |
106 91 109
|
mul2lt0rgt0 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 0 < 𝐴 ) → 𝐵 < 0 ) |
111 |
105 110 85
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 0 < 𝐴 ) → ( sgn ‘ 𝐵 ) = - 1 ) |
112 |
111
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 0 < 𝐴 ) → ( 1 · ( sgn ‘ 𝐵 ) ) = ( 1 · - 1 ) ) |
113 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
114 |
113
|
mulid2i |
⊢ ( 1 · - 1 ) = - 1 |
115 |
112 114
|
eqtr2di |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 0 < 𝐴 ) → - 1 = ( 1 · ( sgn ‘ 𝐵 ) ) ) |
116 |
106
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 < 0 ) → 𝐵 ∈ ℝ ) |
117 |
116
|
rexrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 < 0 ) → 𝐵 ∈ ℝ* ) |
118 |
106 91 109
|
mul2lt0rlt0 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 < 0 ) → 0 < 𝐵 ) |
119 |
117 118 59
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 < 0 ) → ( sgn ‘ 𝐵 ) = 1 ) |
120 |
119
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 < 0 ) → ( - 1 · ( sgn ‘ 𝐵 ) ) = ( - 1 · 1 ) ) |
121 |
113
|
mulid1i |
⊢ ( - 1 · 1 ) = - 1 |
122 |
120 121
|
eqtr2di |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) ∧ 𝐴 < 0 ) → - 1 = ( - 1 · ( sgn ‘ 𝐵 ) ) ) |
123 |
92 93 94 95 103 115 122
|
sgn3da |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐴 · 𝐵 ) < 0 ) → - 1 = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ) |
124 |
2 3 4 5 31 90 123
|
sgn3da |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( sgn ‘ ( 𝐴 · 𝐵 ) ) = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ) |