| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℝ+ ) |
| 2 |
1
|
rpred |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
| 3 |
|
sgnmul |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( sgn ‘ ( 𝐴 · 𝐵 ) ) = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ) |
| 4 |
2 3
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( sgn ‘ ( 𝐴 · 𝐵 ) ) = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ) |
| 5 |
1
|
rpxrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℝ* ) |
| 6 |
1
|
rpgt0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 0 < 𝐵 ) |
| 7 |
|
sgnp |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) → ( sgn ‘ 𝐵 ) = 1 ) |
| 8 |
5 6 7
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( sgn ‘ 𝐵 ) = 1 ) |
| 9 |
8
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) = ( ( sgn ‘ 𝐴 ) · 1 ) ) |
| 10 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 11 |
|
sgnclre |
⊢ ( 𝐴 ∈ ℝ → ( sgn ‘ 𝐴 ) ∈ ℝ ) |
| 12 |
|
ax-1rid |
⊢ ( ( sgn ‘ 𝐴 ) ∈ ℝ → ( ( sgn ‘ 𝐴 ) · 1 ) = ( sgn ‘ 𝐴 ) ) |
| 13 |
10 11 12
|
3syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( sgn ‘ 𝐴 ) · 1 ) = ( sgn ‘ 𝐴 ) ) |
| 14 |
4 9 13
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( sgn ‘ ( 𝐴 · 𝐵 ) ) = ( sgn ‘ 𝐴 ) ) |