Metamath Proof Explorer


Theorem sgnmulrp2

Description: Multiplication by a positive number does not affect signum. (Contributed by Thierry Arnoux, 2-Oct-2018)

Ref Expression
Assertion sgnmulrp2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( sgn ‘ ( 𝐴 · 𝐵 ) ) = ( sgn ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℝ+ )
2 1 rpred ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℝ )
3 sgnmul ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( sgn ‘ ( 𝐴 · 𝐵 ) ) = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) )
4 2 3 syldan ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( sgn ‘ ( 𝐴 · 𝐵 ) ) = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) )
5 1 rpxrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℝ* )
6 1 rpgt0d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 0 < 𝐵 )
7 sgnp ( ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) → ( sgn ‘ 𝐵 ) = 1 )
8 5 6 7 syl2anc ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( sgn ‘ 𝐵 ) = 1 )
9 8 oveq2d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) = ( ( sgn ‘ 𝐴 ) · 1 ) )
10 simpl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ∈ ℝ )
11 sgnclre ( 𝐴 ∈ ℝ → ( sgn ‘ 𝐴 ) ∈ ℝ )
12 ax-1rid ( ( sgn ‘ 𝐴 ) ∈ ℝ → ( ( sgn ‘ 𝐴 ) · 1 ) = ( sgn ‘ 𝐴 ) )
13 10 11 12 3syl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( sgn ‘ 𝐴 ) · 1 ) = ( sgn ‘ 𝐴 ) )
14 4 9 13 3eqtrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( sgn ‘ ( 𝐴 · 𝐵 ) ) = ( sgn ‘ 𝐴 ) )