| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  𝐵  ∈  ℝ+ ) | 
						
							| 2 | 1 | rpred | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | sgnmul | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  ( ( sgn ‘ 𝐴 )  ·  ( sgn ‘ 𝐵 ) ) ) | 
						
							| 4 | 2 3 | syldan | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  ( ( sgn ‘ 𝐴 )  ·  ( sgn ‘ 𝐵 ) ) ) | 
						
							| 5 | 1 | rpxrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  𝐵  ∈  ℝ* ) | 
						
							| 6 | 1 | rpgt0d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  0  <  𝐵 ) | 
						
							| 7 |  | sgnp | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  0  <  𝐵 )  →  ( sgn ‘ 𝐵 )  =  1 ) | 
						
							| 8 | 5 6 7 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( sgn ‘ 𝐵 )  =  1 ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( sgn ‘ 𝐴 )  ·  ( sgn ‘ 𝐵 ) )  =  ( ( sgn ‘ 𝐴 )  ·  1 ) ) | 
						
							| 10 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  𝐴  ∈  ℝ ) | 
						
							| 11 |  | sgnclre | ⊢ ( 𝐴  ∈  ℝ  →  ( sgn ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 12 |  | ax-1rid | ⊢ ( ( sgn ‘ 𝐴 )  ∈  ℝ  →  ( ( sgn ‘ 𝐴 )  ·  1 )  =  ( sgn ‘ 𝐴 ) ) | 
						
							| 13 | 10 11 12 | 3syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( sgn ‘ 𝐴 )  ·  1 )  =  ( sgn ‘ 𝐴 ) ) | 
						
							| 14 | 4 9 13 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  ( sgn ‘ 𝐴 ) ) |