Metamath Proof Explorer


Theorem sgnmulrp2

Description: Multiplication by a positive number does not affect signum. (Contributed by Thierry Arnoux, 2-Oct-2018)

Ref Expression
Assertion sgnmulrp2 AB+sgnAB=sgnA

Proof

Step Hyp Ref Expression
1 simpr AB+B+
2 1 rpred AB+B
3 sgnmul ABsgnAB=sgnAsgnB
4 2 3 syldan AB+sgnAB=sgnAsgnB
5 1 rpxrd AB+B*
6 1 rpgt0d AB+0<B
7 sgnp B*0<BsgnB=1
8 5 6 7 syl2anc AB+sgnB=1
9 8 oveq2d AB+sgnAsgnB=sgnA1
10 simpl AB+A
11 sgnclre AsgnA
12 ax-1rid sgnAsgnA1=sgnA
13 10 11 12 3syl AB+sgnA1=sgnA
14 4 9 13 3eqtrd AB+sgnAB=sgnA