| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
|
| 2 |
1
|
rexrd |
|
| 3 |
|
eqeq2 |
|
| 4 |
|
eqeq2 |
|
| 5 |
|
eqeq2 |
|
| 6 |
|
simpr |
|
| 7 |
1
|
recnd |
|
| 8 |
7
|
adantr |
|
| 9 |
|
simplr |
|
| 10 |
9
|
recnd |
|
| 11 |
10
|
adantr |
|
| 12 |
|
simplr |
|
| 13 |
12
|
lt0ne0d |
|
| 14 |
8 11 13
|
mulne0bad |
|
| 15 |
6 14
|
pm2.21ddne |
|
| 16 |
|
simplll |
|
| 17 |
|
simpllr |
|
| 18 |
16 17
|
resubcld |
|
| 19 |
18
|
rexrd |
|
| 20 |
|
0red |
|
| 21 |
|
simpr |
|
| 22 |
1 9 21
|
mul2lt0lgt0 |
|
| 23 |
|
simpr |
|
| 24 |
17 20 16 22 23
|
lttrd |
|
| 25 |
|
simpr |
|
| 26 |
|
simpl |
|
| 27 |
25 26
|
posdifd |
|
| 28 |
27
|
biimpa |
|
| 29 |
16 17 24 28
|
syl21anc |
|
| 30 |
|
sgnp |
|
| 31 |
19 29 30
|
syl2anc |
|
| 32 |
|
simplll |
|
| 33 |
|
simpllr |
|
| 34 |
32 33
|
resubcld |
|
| 35 |
34
|
rexrd |
|
| 36 |
|
0red |
|
| 37 |
7
|
adantr |
|
| 38 |
37
|
subid1d |
|
| 39 |
|
simpr |
|
| 40 |
1 9 21
|
mul2lt0llt0 |
|
| 41 |
32 36 33 39 40
|
lttrd |
|
| 42 |
38 41
|
eqbrtrd |
|
| 43 |
32 36 33 42
|
ltsub23d |
|
| 44 |
|
sgnn |
|
| 45 |
35 43 44
|
syl2anc |
|
| 46 |
2 3 4 5 15 31 45
|
sgn3da |
|