Metamath Proof Explorer


Theorem sgnnbi

Description: Negative signum. (Contributed by Thierry Arnoux, 2-Oct-2018)

Ref Expression
Assertion sgnnbi A * sgn A = 1 A < 0

Proof

Step Hyp Ref Expression
1 id A * A *
2 eqeq1 sgn A = 0 sgn A = 1 0 = 1
3 2 imbi1d sgn A = 0 sgn A = 1 A < 0 0 = 1 A < 0
4 eqeq1 sgn A = 1 sgn A = 1 1 = 1
5 4 imbi1d sgn A = 1 sgn A = 1 A < 0 1 = 1 A < 0
6 eqeq1 sgn A = 1 sgn A = 1 1 = 1
7 6 imbi1d sgn A = 1 sgn A = 1 A < 0 1 = 1 A < 0
8 neg1ne0 1 0
9 8 nesymi ¬ 0 = 1
10 9 pm2.21i 0 = 1 A < 0
11 10 a1i A * A = 0 0 = 1 A < 0
12 neg1rr 1
13 neg1lt0 1 < 0
14 0lt1 0 < 1
15 0re 0
16 1re 1
17 12 15 16 lttri 1 < 0 0 < 1 1 < 1
18 13 14 17 mp2an 1 < 1
19 12 18 gtneii 1 1
20 19 neii ¬ 1 = 1
21 20 pm2.21i 1 = 1 A < 0
22 21 a1i A * 0 < A 1 = 1 A < 0
23 simp2 A * A < 0 1 = 1 A < 0
24 23 3expia A * A < 0 1 = 1 A < 0
25 1 3 5 7 11 22 24 sgn3da A * sgn A = 1 A < 0
26 25 imp A * sgn A = 1 A < 0
27 sgnn A * A < 0 sgn A = 1
28 26 27 impbida A * sgn A = 1 A < 0