| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( 𝐴  ∈  ℝ*  →  𝐴  ∈  ℝ* ) | 
						
							| 2 |  | eqeq1 | ⊢ ( ( sgn ‘ 𝐴 )  =  0  →  ( ( sgn ‘ 𝐴 )  =  - 1  ↔  0  =  - 1 ) ) | 
						
							| 3 | 2 | imbi1d | ⊢ ( ( sgn ‘ 𝐴 )  =  0  →  ( ( ( sgn ‘ 𝐴 )  =  - 1  →  𝐴  <  0 )  ↔  ( 0  =  - 1  →  𝐴  <  0 ) ) ) | 
						
							| 4 |  | eqeq1 | ⊢ ( ( sgn ‘ 𝐴 )  =  1  →  ( ( sgn ‘ 𝐴 )  =  - 1  ↔  1  =  - 1 ) ) | 
						
							| 5 | 4 | imbi1d | ⊢ ( ( sgn ‘ 𝐴 )  =  1  →  ( ( ( sgn ‘ 𝐴 )  =  - 1  →  𝐴  <  0 )  ↔  ( 1  =  - 1  →  𝐴  <  0 ) ) ) | 
						
							| 6 |  | eqeq1 | ⊢ ( ( sgn ‘ 𝐴 )  =  - 1  →  ( ( sgn ‘ 𝐴 )  =  - 1  ↔  - 1  =  - 1 ) ) | 
						
							| 7 | 6 | imbi1d | ⊢ ( ( sgn ‘ 𝐴 )  =  - 1  →  ( ( ( sgn ‘ 𝐴 )  =  - 1  →  𝐴  <  0 )  ↔  ( - 1  =  - 1  →  𝐴  <  0 ) ) ) | 
						
							| 8 |  | neg1ne0 | ⊢ - 1  ≠  0 | 
						
							| 9 | 8 | nesymi | ⊢ ¬  0  =  - 1 | 
						
							| 10 | 9 | pm2.21i | ⊢ ( 0  =  - 1  →  𝐴  <  0 ) | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  =  0 )  →  ( 0  =  - 1  →  𝐴  <  0 ) ) | 
						
							| 12 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 13 |  | neg1lt0 | ⊢ - 1  <  0 | 
						
							| 14 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 15 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 16 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 17 | 12 15 16 | lttri | ⊢ ( ( - 1  <  0  ∧  0  <  1 )  →  - 1  <  1 ) | 
						
							| 18 | 13 14 17 | mp2an | ⊢ - 1  <  1 | 
						
							| 19 | 12 18 | gtneii | ⊢ 1  ≠  - 1 | 
						
							| 20 | 19 | neii | ⊢ ¬  1  =  - 1 | 
						
							| 21 | 20 | pm2.21i | ⊢ ( 1  =  - 1  →  𝐴  <  0 ) | 
						
							| 22 | 21 | a1i | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  <  𝐴 )  →  ( 1  =  - 1  →  𝐴  <  0 ) ) | 
						
							| 23 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  0  ∧  - 1  =  - 1 )  →  𝐴  <  0 ) | 
						
							| 24 | 23 | 3expia | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  0 )  →  ( - 1  =  - 1  →  𝐴  <  0 ) ) | 
						
							| 25 | 1 3 5 7 11 22 24 | sgn3da | ⊢ ( 𝐴  ∈  ℝ*  →  ( ( sgn ‘ 𝐴 )  =  - 1  →  𝐴  <  0 ) ) | 
						
							| 26 | 25 | imp | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  ( sgn ‘ 𝐴 )  =  - 1 )  →  𝐴  <  0 ) | 
						
							| 27 |  | sgnn | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  0 )  →  ( sgn ‘ 𝐴 )  =  - 1 ) | 
						
							| 28 | 26 27 | impbida | ⊢ ( 𝐴  ∈  ℝ*  →  ( ( sgn ‘ 𝐴 )  =  - 1  ↔  𝐴  <  0 ) ) |