| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id |  |-  ( A e. RR* -> A e. RR* ) | 
						
							| 2 |  | eqeq1 |  |-  ( ( sgn ` A ) = 0 -> ( ( sgn ` A ) = -u 1 <-> 0 = -u 1 ) ) | 
						
							| 3 | 2 | imbi1d |  |-  ( ( sgn ` A ) = 0 -> ( ( ( sgn ` A ) = -u 1 -> A < 0 ) <-> ( 0 = -u 1 -> A < 0 ) ) ) | 
						
							| 4 |  | eqeq1 |  |-  ( ( sgn ` A ) = 1 -> ( ( sgn ` A ) = -u 1 <-> 1 = -u 1 ) ) | 
						
							| 5 | 4 | imbi1d |  |-  ( ( sgn ` A ) = 1 -> ( ( ( sgn ` A ) = -u 1 -> A < 0 ) <-> ( 1 = -u 1 -> A < 0 ) ) ) | 
						
							| 6 |  | eqeq1 |  |-  ( ( sgn ` A ) = -u 1 -> ( ( sgn ` A ) = -u 1 <-> -u 1 = -u 1 ) ) | 
						
							| 7 | 6 | imbi1d |  |-  ( ( sgn ` A ) = -u 1 -> ( ( ( sgn ` A ) = -u 1 -> A < 0 ) <-> ( -u 1 = -u 1 -> A < 0 ) ) ) | 
						
							| 8 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 9 | 8 | nesymi |  |-  -. 0 = -u 1 | 
						
							| 10 | 9 | pm2.21i |  |-  ( 0 = -u 1 -> A < 0 ) | 
						
							| 11 | 10 | a1i |  |-  ( ( A e. RR* /\ A = 0 ) -> ( 0 = -u 1 -> A < 0 ) ) | 
						
							| 12 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 13 |  | neg1lt0 |  |-  -u 1 < 0 | 
						
							| 14 |  | 0lt1 |  |-  0 < 1 | 
						
							| 15 |  | 0re |  |-  0 e. RR | 
						
							| 16 |  | 1re |  |-  1 e. RR | 
						
							| 17 | 12 15 16 | lttri |  |-  ( ( -u 1 < 0 /\ 0 < 1 ) -> -u 1 < 1 ) | 
						
							| 18 | 13 14 17 | mp2an |  |-  -u 1 < 1 | 
						
							| 19 | 12 18 | gtneii |  |-  1 =/= -u 1 | 
						
							| 20 | 19 | neii |  |-  -. 1 = -u 1 | 
						
							| 21 | 20 | pm2.21i |  |-  ( 1 = -u 1 -> A < 0 ) | 
						
							| 22 | 21 | a1i |  |-  ( ( A e. RR* /\ 0 < A ) -> ( 1 = -u 1 -> A < 0 ) ) | 
						
							| 23 |  | simp2 |  |-  ( ( A e. RR* /\ A < 0 /\ -u 1 = -u 1 ) -> A < 0 ) | 
						
							| 24 | 23 | 3expia |  |-  ( ( A e. RR* /\ A < 0 ) -> ( -u 1 = -u 1 -> A < 0 ) ) | 
						
							| 25 | 1 3 5 7 11 22 24 | sgn3da |  |-  ( A e. RR* -> ( ( sgn ` A ) = -u 1 -> A < 0 ) ) | 
						
							| 26 | 25 | imp |  |-  ( ( A e. RR* /\ ( sgn ` A ) = -u 1 ) -> A < 0 ) | 
						
							| 27 |  | sgnn |  |-  ( ( A e. RR* /\ A < 0 ) -> ( sgn ` A ) = -u 1 ) | 
						
							| 28 | 26 27 | impbida |  |-  ( A e. RR* -> ( ( sgn ` A ) = -u 1 <-> A < 0 ) ) |