| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( A e. RR* -> A e. RR* ) |
| 2 |
|
eqeq1 |
|- ( ( sgn ` A ) = 0 -> ( ( sgn ` A ) = -u 1 <-> 0 = -u 1 ) ) |
| 3 |
2
|
imbi1d |
|- ( ( sgn ` A ) = 0 -> ( ( ( sgn ` A ) = -u 1 -> A < 0 ) <-> ( 0 = -u 1 -> A < 0 ) ) ) |
| 4 |
|
eqeq1 |
|- ( ( sgn ` A ) = 1 -> ( ( sgn ` A ) = -u 1 <-> 1 = -u 1 ) ) |
| 5 |
4
|
imbi1d |
|- ( ( sgn ` A ) = 1 -> ( ( ( sgn ` A ) = -u 1 -> A < 0 ) <-> ( 1 = -u 1 -> A < 0 ) ) ) |
| 6 |
|
eqeq1 |
|- ( ( sgn ` A ) = -u 1 -> ( ( sgn ` A ) = -u 1 <-> -u 1 = -u 1 ) ) |
| 7 |
6
|
imbi1d |
|- ( ( sgn ` A ) = -u 1 -> ( ( ( sgn ` A ) = -u 1 -> A < 0 ) <-> ( -u 1 = -u 1 -> A < 0 ) ) ) |
| 8 |
|
neg1ne0 |
|- -u 1 =/= 0 |
| 9 |
8
|
nesymi |
|- -. 0 = -u 1 |
| 10 |
9
|
pm2.21i |
|- ( 0 = -u 1 -> A < 0 ) |
| 11 |
10
|
a1i |
|- ( ( A e. RR* /\ A = 0 ) -> ( 0 = -u 1 -> A < 0 ) ) |
| 12 |
|
neg1rr |
|- -u 1 e. RR |
| 13 |
|
neg1lt0 |
|- -u 1 < 0 |
| 14 |
|
0lt1 |
|- 0 < 1 |
| 15 |
|
0re |
|- 0 e. RR |
| 16 |
|
1re |
|- 1 e. RR |
| 17 |
12 15 16
|
lttri |
|- ( ( -u 1 < 0 /\ 0 < 1 ) -> -u 1 < 1 ) |
| 18 |
13 14 17
|
mp2an |
|- -u 1 < 1 |
| 19 |
12 18
|
gtneii |
|- 1 =/= -u 1 |
| 20 |
19
|
neii |
|- -. 1 = -u 1 |
| 21 |
20
|
pm2.21i |
|- ( 1 = -u 1 -> A < 0 ) |
| 22 |
21
|
a1i |
|- ( ( A e. RR* /\ 0 < A ) -> ( 1 = -u 1 -> A < 0 ) ) |
| 23 |
|
simp2 |
|- ( ( A e. RR* /\ A < 0 /\ -u 1 = -u 1 ) -> A < 0 ) |
| 24 |
23
|
3expia |
|- ( ( A e. RR* /\ A < 0 ) -> ( -u 1 = -u 1 -> A < 0 ) ) |
| 25 |
1 3 5 7 11 22 24
|
sgn3da |
|- ( A e. RR* -> ( ( sgn ` A ) = -u 1 -> A < 0 ) ) |
| 26 |
25
|
imp |
|- ( ( A e. RR* /\ ( sgn ` A ) = -u 1 ) -> A < 0 ) |
| 27 |
|
sgnn |
|- ( ( A e. RR* /\ A < 0 ) -> ( sgn ` A ) = -u 1 ) |
| 28 |
26 27
|
impbida |
|- ( A e. RR* -> ( ( sgn ` A ) = -u 1 <-> A < 0 ) ) |