| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sgn3da.0 |
|- ( ph -> A e. RR* ) |
| 2 |
|
sgn3da.1 |
|- ( ( sgn ` A ) = 0 -> ( ps <-> ch ) ) |
| 3 |
|
sgn3da.2 |
|- ( ( sgn ` A ) = 1 -> ( ps <-> th ) ) |
| 4 |
|
sgn3da.3 |
|- ( ( sgn ` A ) = -u 1 -> ( ps <-> ta ) ) |
| 5 |
|
sgn3da.4 |
|- ( ( ph /\ A = 0 ) -> ch ) |
| 6 |
|
sgn3da.5 |
|- ( ( ph /\ 0 < A ) -> th ) |
| 7 |
|
sgn3da.6 |
|- ( ( ph /\ A < 0 ) -> ta ) |
| 8 |
|
sgnval |
|- ( A e. RR* -> ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) |
| 9 |
1 8
|
syl |
|- ( ph -> ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) |
| 10 |
9
|
eqeq2d |
|- ( ph -> ( 0 = ( sgn ` A ) <-> 0 = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) ) |
| 11 |
10
|
pm5.32i |
|- ( ( ph /\ 0 = ( sgn ` A ) ) <-> ( ph /\ 0 = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) ) |
| 12 |
2
|
eqcoms |
|- ( 0 = ( sgn ` A ) -> ( ps <-> ch ) ) |
| 13 |
12
|
bicomd |
|- ( 0 = ( sgn ` A ) -> ( ch <-> ps ) ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ 0 = ( sgn ` A ) ) -> ( ch <-> ps ) ) |
| 15 |
11 14
|
sylbir |
|- ( ( ph /\ 0 = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) -> ( ch <-> ps ) ) |
| 16 |
15
|
expcom |
|- ( 0 = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) -> ( ph -> ( ch <-> ps ) ) ) |
| 17 |
16
|
pm5.74d |
|- ( 0 = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) -> ( ( ph -> ch ) <-> ( ph -> ps ) ) ) |
| 18 |
9
|
eqeq2d |
|- ( ph -> ( if ( A < 0 , -u 1 , 1 ) = ( sgn ` A ) <-> if ( A < 0 , -u 1 , 1 ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) ) |
| 19 |
18
|
pm5.32i |
|- ( ( ph /\ if ( A < 0 , -u 1 , 1 ) = ( sgn ` A ) ) <-> ( ph /\ if ( A < 0 , -u 1 , 1 ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) ) |
| 20 |
|
eqeq1 |
|- ( -u 1 = if ( A < 0 , -u 1 , 1 ) -> ( -u 1 = ( sgn ` A ) <-> if ( A < 0 , -u 1 , 1 ) = ( sgn ` A ) ) ) |
| 21 |
20
|
imbi1d |
|- ( -u 1 = if ( A < 0 , -u 1 , 1 ) -> ( ( -u 1 = ( sgn ` A ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) <-> ( if ( A < 0 , -u 1 , 1 ) = ( sgn ` A ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) ) ) |
| 22 |
|
eqeq1 |
|- ( 1 = if ( A < 0 , -u 1 , 1 ) -> ( 1 = ( sgn ` A ) <-> if ( A < 0 , -u 1 , 1 ) = ( sgn ` A ) ) ) |
| 23 |
22
|
imbi1d |
|- ( 1 = if ( A < 0 , -u 1 , 1 ) -> ( ( 1 = ( sgn ` A ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) <-> ( if ( A < 0 , -u 1 , 1 ) = ( sgn ` A ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) ) ) |
| 24 |
7
|
adantr |
|- ( ( ( ph /\ A < 0 ) /\ ( A < 0 -> ta ) ) -> ta ) |
| 25 |
|
simp2 |
|- ( ( ( ph /\ A < 0 ) /\ ta /\ A < 0 ) -> ta ) |
| 26 |
25
|
3expia |
|- ( ( ( ph /\ A < 0 ) /\ ta ) -> ( A < 0 -> ta ) ) |
| 27 |
24 26
|
impbida |
|- ( ( ph /\ A < 0 ) -> ( ( A < 0 -> ta ) <-> ta ) ) |
| 28 |
|
pm3.24 |
|- -. ( A < 0 /\ -. A < 0 ) |
| 29 |
28
|
pm2.21i |
|- ( ( A < 0 /\ -. A < 0 ) -> th ) |
| 30 |
29
|
adantl |
|- ( ( ph /\ ( A < 0 /\ -. A < 0 ) ) -> th ) |
| 31 |
30
|
expr |
|- ( ( ph /\ A < 0 ) -> ( -. A < 0 -> th ) ) |
| 32 |
|
tbtru |
|- ( ( -. A < 0 -> th ) <-> ( ( -. A < 0 -> th ) <-> T. ) ) |
| 33 |
31 32
|
sylib |
|- ( ( ph /\ A < 0 ) -> ( ( -. A < 0 -> th ) <-> T. ) ) |
| 34 |
27 33
|
anbi12d |
|- ( ( ph /\ A < 0 ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ( ta /\ T. ) ) ) |
| 35 |
|
ancom |
|- ( ( ta /\ T. ) <-> ( T. /\ ta ) ) |
| 36 |
|
truan |
|- ( ( T. /\ ta ) <-> ta ) |
| 37 |
35 36
|
bitri |
|- ( ( ta /\ T. ) <-> ta ) |
| 38 |
34 37
|
bitrdi |
|- ( ( ph /\ A < 0 ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ta ) ) |
| 39 |
38
|
3adant3 |
|- ( ( ph /\ A < 0 /\ -u 1 = ( sgn ` A ) ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ta ) ) |
| 40 |
4
|
eqcoms |
|- ( -u 1 = ( sgn ` A ) -> ( ps <-> ta ) ) |
| 41 |
40
|
3ad2ant3 |
|- ( ( ph /\ A < 0 /\ -u 1 = ( sgn ` A ) ) -> ( ps <-> ta ) ) |
| 42 |
39 41
|
bitr4d |
|- ( ( ph /\ A < 0 /\ -u 1 = ( sgn ` A ) ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) |
| 43 |
42
|
3expia |
|- ( ( ph /\ A < 0 ) -> ( -u 1 = ( sgn ` A ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) ) |
| 44 |
7
|
3adant2 |
|- ( ( ph /\ -. A < 0 /\ A < 0 ) -> ta ) |
| 45 |
44
|
3expia |
|- ( ( ph /\ -. A < 0 ) -> ( A < 0 -> ta ) ) |
| 46 |
|
tbtru |
|- ( ( A < 0 -> ta ) <-> ( ( A < 0 -> ta ) <-> T. ) ) |
| 47 |
45 46
|
sylib |
|- ( ( ph /\ -. A < 0 ) -> ( ( A < 0 -> ta ) <-> T. ) ) |
| 48 |
|
pm3.35 |
|- ( ( -. A < 0 /\ ( -. A < 0 -> th ) ) -> th ) |
| 49 |
48
|
adantll |
|- ( ( ( ph /\ -. A < 0 ) /\ ( -. A < 0 -> th ) ) -> th ) |
| 50 |
|
simp2 |
|- ( ( ( ph /\ -. A < 0 ) /\ th /\ -. A < 0 ) -> th ) |
| 51 |
50
|
3expia |
|- ( ( ( ph /\ -. A < 0 ) /\ th ) -> ( -. A < 0 -> th ) ) |
| 52 |
49 51
|
impbida |
|- ( ( ph /\ -. A < 0 ) -> ( ( -. A < 0 -> th ) <-> th ) ) |
| 53 |
47 52
|
anbi12d |
|- ( ( ph /\ -. A < 0 ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ( T. /\ th ) ) ) |
| 54 |
|
truan |
|- ( ( T. /\ th ) <-> th ) |
| 55 |
53 54
|
bitrdi |
|- ( ( ph /\ -. A < 0 ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> th ) ) |
| 56 |
55
|
3adant3 |
|- ( ( ph /\ -. A < 0 /\ 1 = ( sgn ` A ) ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> th ) ) |
| 57 |
3
|
eqcoms |
|- ( 1 = ( sgn ` A ) -> ( ps <-> th ) ) |
| 58 |
57
|
3ad2ant3 |
|- ( ( ph /\ -. A < 0 /\ 1 = ( sgn ` A ) ) -> ( ps <-> th ) ) |
| 59 |
56 58
|
bitr4d |
|- ( ( ph /\ -. A < 0 /\ 1 = ( sgn ` A ) ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) |
| 60 |
59
|
3expia |
|- ( ( ph /\ -. A < 0 ) -> ( 1 = ( sgn ` A ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) ) |
| 61 |
21 23 43 60
|
ifbothda |
|- ( ph -> ( if ( A < 0 , -u 1 , 1 ) = ( sgn ` A ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) ) |
| 62 |
61
|
imp |
|- ( ( ph /\ if ( A < 0 , -u 1 , 1 ) = ( sgn ` A ) ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) |
| 63 |
19 62
|
sylbir |
|- ( ( ph /\ if ( A < 0 , -u 1 , 1 ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) |
| 64 |
63
|
expcom |
|- ( if ( A < 0 , -u 1 , 1 ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) -> ( ph -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) ) |
| 65 |
64
|
pm5.74d |
|- ( if ( A < 0 , -u 1 , 1 ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) -> ( ( ph -> ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) ) <-> ( ph -> ps ) ) ) |
| 66 |
5
|
expcom |
|- ( A = 0 -> ( ph -> ch ) ) |
| 67 |
66
|
adantl |
|- ( ( T. /\ A = 0 ) -> ( ph -> ch ) ) |
| 68 |
7
|
ex |
|- ( ph -> ( A < 0 -> ta ) ) |
| 69 |
68
|
adantr |
|- ( ( ph /\ -. A = 0 ) -> ( A < 0 -> ta ) ) |
| 70 |
|
simp1 |
|- ( ( ph /\ -. A = 0 /\ -. A < 0 ) -> ph ) |
| 71 |
|
df-ne |
|- ( A =/= 0 <-> -. A = 0 ) |
| 72 |
|
0xr |
|- 0 e. RR* |
| 73 |
|
xrlttri2 |
|- ( ( A e. RR* /\ 0 e. RR* ) -> ( A =/= 0 <-> ( A < 0 \/ 0 < A ) ) ) |
| 74 |
1 72 73
|
sylancl |
|- ( ph -> ( A =/= 0 <-> ( A < 0 \/ 0 < A ) ) ) |
| 75 |
71 74
|
bitr3id |
|- ( ph -> ( -. A = 0 <-> ( A < 0 \/ 0 < A ) ) ) |
| 76 |
75
|
biimpa |
|- ( ( ph /\ -. A = 0 ) -> ( A < 0 \/ 0 < A ) ) |
| 77 |
76
|
ord |
|- ( ( ph /\ -. A = 0 ) -> ( -. A < 0 -> 0 < A ) ) |
| 78 |
77
|
3impia |
|- ( ( ph /\ -. A = 0 /\ -. A < 0 ) -> 0 < A ) |
| 79 |
70 78 6
|
syl2anc |
|- ( ( ph /\ -. A = 0 /\ -. A < 0 ) -> th ) |
| 80 |
79
|
3expia |
|- ( ( ph /\ -. A = 0 ) -> ( -. A < 0 -> th ) ) |
| 81 |
69 80
|
jca |
|- ( ( ph /\ -. A = 0 ) -> ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) ) |
| 82 |
81
|
expcom |
|- ( -. A = 0 -> ( ph -> ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) ) ) |
| 83 |
82
|
adantl |
|- ( ( T. /\ -. A = 0 ) -> ( ph -> ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) ) ) |
| 84 |
17 65 67 83
|
ifbothda |
|- ( T. -> ( ph -> ps ) ) |
| 85 |
84
|
mptru |
|- ( ph -> ps ) |