| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sgn3da.0 |  |-  ( ph -> A e. RR* ) | 
						
							| 2 |  | sgn3da.1 |  |-  ( ( sgn ` A ) = 0 -> ( ps <-> ch ) ) | 
						
							| 3 |  | sgn3da.2 |  |-  ( ( sgn ` A ) = 1 -> ( ps <-> th ) ) | 
						
							| 4 |  | sgn3da.3 |  |-  ( ( sgn ` A ) = -u 1 -> ( ps <-> ta ) ) | 
						
							| 5 |  | sgn3da.4 |  |-  ( ( ph /\ A = 0 ) -> ch ) | 
						
							| 6 |  | sgn3da.5 |  |-  ( ( ph /\ 0 < A ) -> th ) | 
						
							| 7 |  | sgn3da.6 |  |-  ( ( ph /\ A < 0 ) -> ta ) | 
						
							| 8 |  | sgnval |  |-  ( A e. RR* -> ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) | 
						
							| 9 | 1 8 | syl |  |-  ( ph -> ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) | 
						
							| 10 | 9 | eqeq2d |  |-  ( ph -> ( 0 = ( sgn ` A ) <-> 0 = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) ) | 
						
							| 11 | 10 | pm5.32i |  |-  ( ( ph /\ 0 = ( sgn ` A ) ) <-> ( ph /\ 0 = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) ) | 
						
							| 12 | 2 | eqcoms |  |-  ( 0 = ( sgn ` A ) -> ( ps <-> ch ) ) | 
						
							| 13 | 12 | bicomd |  |-  ( 0 = ( sgn ` A ) -> ( ch <-> ps ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ 0 = ( sgn ` A ) ) -> ( ch <-> ps ) ) | 
						
							| 15 | 11 14 | sylbir |  |-  ( ( ph /\ 0 = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) -> ( ch <-> ps ) ) | 
						
							| 16 | 15 | expcom |  |-  ( 0 = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) -> ( ph -> ( ch <-> ps ) ) ) | 
						
							| 17 | 16 | pm5.74d |  |-  ( 0 = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) -> ( ( ph -> ch ) <-> ( ph -> ps ) ) ) | 
						
							| 18 | 9 | eqeq2d |  |-  ( ph -> ( if ( A < 0 , -u 1 , 1 ) = ( sgn ` A ) <-> if ( A < 0 , -u 1 , 1 ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) ) | 
						
							| 19 | 18 | pm5.32i |  |-  ( ( ph /\ if ( A < 0 , -u 1 , 1 ) = ( sgn ` A ) ) <-> ( ph /\ if ( A < 0 , -u 1 , 1 ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) ) | 
						
							| 20 |  | eqeq1 |  |-  ( -u 1 = if ( A < 0 , -u 1 , 1 ) -> ( -u 1 = ( sgn ` A ) <-> if ( A < 0 , -u 1 , 1 ) = ( sgn ` A ) ) ) | 
						
							| 21 | 20 | imbi1d |  |-  ( -u 1 = if ( A < 0 , -u 1 , 1 ) -> ( ( -u 1 = ( sgn ` A ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) <-> ( if ( A < 0 , -u 1 , 1 ) = ( sgn ` A ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) ) ) | 
						
							| 22 |  | eqeq1 |  |-  ( 1 = if ( A < 0 , -u 1 , 1 ) -> ( 1 = ( sgn ` A ) <-> if ( A < 0 , -u 1 , 1 ) = ( sgn ` A ) ) ) | 
						
							| 23 | 22 | imbi1d |  |-  ( 1 = if ( A < 0 , -u 1 , 1 ) -> ( ( 1 = ( sgn ` A ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) <-> ( if ( A < 0 , -u 1 , 1 ) = ( sgn ` A ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) ) ) | 
						
							| 24 | 7 | adantr |  |-  ( ( ( ph /\ A < 0 ) /\ ( A < 0 -> ta ) ) -> ta ) | 
						
							| 25 |  | simp2 |  |-  ( ( ( ph /\ A < 0 ) /\ ta /\ A < 0 ) -> ta ) | 
						
							| 26 | 25 | 3expia |  |-  ( ( ( ph /\ A < 0 ) /\ ta ) -> ( A < 0 -> ta ) ) | 
						
							| 27 | 24 26 | impbida |  |-  ( ( ph /\ A < 0 ) -> ( ( A < 0 -> ta ) <-> ta ) ) | 
						
							| 28 |  | pm3.24 |  |-  -. ( A < 0 /\ -. A < 0 ) | 
						
							| 29 | 28 | pm2.21i |  |-  ( ( A < 0 /\ -. A < 0 ) -> th ) | 
						
							| 30 | 29 | adantl |  |-  ( ( ph /\ ( A < 0 /\ -. A < 0 ) ) -> th ) | 
						
							| 31 | 30 | expr |  |-  ( ( ph /\ A < 0 ) -> ( -. A < 0 -> th ) ) | 
						
							| 32 |  | tbtru |  |-  ( ( -. A < 0 -> th ) <-> ( ( -. A < 0 -> th ) <-> T. ) ) | 
						
							| 33 | 31 32 | sylib |  |-  ( ( ph /\ A < 0 ) -> ( ( -. A < 0 -> th ) <-> T. ) ) | 
						
							| 34 | 27 33 | anbi12d |  |-  ( ( ph /\ A < 0 ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ( ta /\ T. ) ) ) | 
						
							| 35 |  | ancom |  |-  ( ( ta /\ T. ) <-> ( T. /\ ta ) ) | 
						
							| 36 |  | truan |  |-  ( ( T. /\ ta ) <-> ta ) | 
						
							| 37 | 35 36 | bitri |  |-  ( ( ta /\ T. ) <-> ta ) | 
						
							| 38 | 34 37 | bitrdi |  |-  ( ( ph /\ A < 0 ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ta ) ) | 
						
							| 39 | 38 | 3adant3 |  |-  ( ( ph /\ A < 0 /\ -u 1 = ( sgn ` A ) ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ta ) ) | 
						
							| 40 | 4 | eqcoms |  |-  ( -u 1 = ( sgn ` A ) -> ( ps <-> ta ) ) | 
						
							| 41 | 40 | 3ad2ant3 |  |-  ( ( ph /\ A < 0 /\ -u 1 = ( sgn ` A ) ) -> ( ps <-> ta ) ) | 
						
							| 42 | 39 41 | bitr4d |  |-  ( ( ph /\ A < 0 /\ -u 1 = ( sgn ` A ) ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) | 
						
							| 43 | 42 | 3expia |  |-  ( ( ph /\ A < 0 ) -> ( -u 1 = ( sgn ` A ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) ) | 
						
							| 44 | 7 | 3adant2 |  |-  ( ( ph /\ -. A < 0 /\ A < 0 ) -> ta ) | 
						
							| 45 | 44 | 3expia |  |-  ( ( ph /\ -. A < 0 ) -> ( A < 0 -> ta ) ) | 
						
							| 46 |  | tbtru |  |-  ( ( A < 0 -> ta ) <-> ( ( A < 0 -> ta ) <-> T. ) ) | 
						
							| 47 | 45 46 | sylib |  |-  ( ( ph /\ -. A < 0 ) -> ( ( A < 0 -> ta ) <-> T. ) ) | 
						
							| 48 |  | pm3.35 |  |-  ( ( -. A < 0 /\ ( -. A < 0 -> th ) ) -> th ) | 
						
							| 49 | 48 | adantll |  |-  ( ( ( ph /\ -. A < 0 ) /\ ( -. A < 0 -> th ) ) -> th ) | 
						
							| 50 |  | simp2 |  |-  ( ( ( ph /\ -. A < 0 ) /\ th /\ -. A < 0 ) -> th ) | 
						
							| 51 | 50 | 3expia |  |-  ( ( ( ph /\ -. A < 0 ) /\ th ) -> ( -. A < 0 -> th ) ) | 
						
							| 52 | 49 51 | impbida |  |-  ( ( ph /\ -. A < 0 ) -> ( ( -. A < 0 -> th ) <-> th ) ) | 
						
							| 53 | 47 52 | anbi12d |  |-  ( ( ph /\ -. A < 0 ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ( T. /\ th ) ) ) | 
						
							| 54 |  | truan |  |-  ( ( T. /\ th ) <-> th ) | 
						
							| 55 | 53 54 | bitrdi |  |-  ( ( ph /\ -. A < 0 ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> th ) ) | 
						
							| 56 | 55 | 3adant3 |  |-  ( ( ph /\ -. A < 0 /\ 1 = ( sgn ` A ) ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> th ) ) | 
						
							| 57 | 3 | eqcoms |  |-  ( 1 = ( sgn ` A ) -> ( ps <-> th ) ) | 
						
							| 58 | 57 | 3ad2ant3 |  |-  ( ( ph /\ -. A < 0 /\ 1 = ( sgn ` A ) ) -> ( ps <-> th ) ) | 
						
							| 59 | 56 58 | bitr4d |  |-  ( ( ph /\ -. A < 0 /\ 1 = ( sgn ` A ) ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) | 
						
							| 60 | 59 | 3expia |  |-  ( ( ph /\ -. A < 0 ) -> ( 1 = ( sgn ` A ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) ) | 
						
							| 61 | 21 23 43 60 | ifbothda |  |-  ( ph -> ( if ( A < 0 , -u 1 , 1 ) = ( sgn ` A ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) ) | 
						
							| 62 | 61 | imp |  |-  ( ( ph /\ if ( A < 0 , -u 1 , 1 ) = ( sgn ` A ) ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) | 
						
							| 63 | 19 62 | sylbir |  |-  ( ( ph /\ if ( A < 0 , -u 1 , 1 ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) | 
						
							| 64 | 63 | expcom |  |-  ( if ( A < 0 , -u 1 , 1 ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) -> ( ph -> ( ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) <-> ps ) ) ) | 
						
							| 65 | 64 | pm5.74d |  |-  ( if ( A < 0 , -u 1 , 1 ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) -> ( ( ph -> ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) ) <-> ( ph -> ps ) ) ) | 
						
							| 66 | 5 | expcom |  |-  ( A = 0 -> ( ph -> ch ) ) | 
						
							| 67 | 66 | adantl |  |-  ( ( T. /\ A = 0 ) -> ( ph -> ch ) ) | 
						
							| 68 | 7 | ex |  |-  ( ph -> ( A < 0 -> ta ) ) | 
						
							| 69 | 68 | adantr |  |-  ( ( ph /\ -. A = 0 ) -> ( A < 0 -> ta ) ) | 
						
							| 70 |  | simp1 |  |-  ( ( ph /\ -. A = 0 /\ -. A < 0 ) -> ph ) | 
						
							| 71 |  | df-ne |  |-  ( A =/= 0 <-> -. A = 0 ) | 
						
							| 72 |  | 0xr |  |-  0 e. RR* | 
						
							| 73 |  | xrlttri2 |  |-  ( ( A e. RR* /\ 0 e. RR* ) -> ( A =/= 0 <-> ( A < 0 \/ 0 < A ) ) ) | 
						
							| 74 | 1 72 73 | sylancl |  |-  ( ph -> ( A =/= 0 <-> ( A < 0 \/ 0 < A ) ) ) | 
						
							| 75 | 71 74 | bitr3id |  |-  ( ph -> ( -. A = 0 <-> ( A < 0 \/ 0 < A ) ) ) | 
						
							| 76 | 75 | biimpa |  |-  ( ( ph /\ -. A = 0 ) -> ( A < 0 \/ 0 < A ) ) | 
						
							| 77 | 76 | ord |  |-  ( ( ph /\ -. A = 0 ) -> ( -. A < 0 -> 0 < A ) ) | 
						
							| 78 | 77 | 3impia |  |-  ( ( ph /\ -. A = 0 /\ -. A < 0 ) -> 0 < A ) | 
						
							| 79 | 70 78 6 | syl2anc |  |-  ( ( ph /\ -. A = 0 /\ -. A < 0 ) -> th ) | 
						
							| 80 | 79 | 3expia |  |-  ( ( ph /\ -. A = 0 ) -> ( -. A < 0 -> th ) ) | 
						
							| 81 | 69 80 | jca |  |-  ( ( ph /\ -. A = 0 ) -> ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) ) | 
						
							| 82 | 81 | expcom |  |-  ( -. A = 0 -> ( ph -> ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) ) ) | 
						
							| 83 | 82 | adantl |  |-  ( ( T. /\ -. A = 0 ) -> ( ph -> ( ( A < 0 -> ta ) /\ ( -. A < 0 -> th ) ) ) ) | 
						
							| 84 | 17 65 67 83 | ifbothda |  |-  ( T. -> ( ph -> ps ) ) | 
						
							| 85 | 84 | mptru |  |-  ( ph -> ps ) |