Metamath Proof Explorer


Theorem sgnpbi

Description: Positive signum. (Contributed by Thierry Arnoux, 2-Oct-2018)

Ref Expression
Assertion sgnpbi ( 𝐴 ∈ ℝ* → ( ( sgn ‘ 𝐴 ) = 1 ↔ 0 < 𝐴 ) )

Proof

Step Hyp Ref Expression
1 id ( 𝐴 ∈ ℝ*𝐴 ∈ ℝ* )
2 eqeq1 ( ( sgn ‘ 𝐴 ) = 0 → ( ( sgn ‘ 𝐴 ) = 1 ↔ 0 = 1 ) )
3 2 imbi1d ( ( sgn ‘ 𝐴 ) = 0 → ( ( ( sgn ‘ 𝐴 ) = 1 → 0 < 𝐴 ) ↔ ( 0 = 1 → 0 < 𝐴 ) ) )
4 eqeq1 ( ( sgn ‘ 𝐴 ) = 1 → ( ( sgn ‘ 𝐴 ) = 1 ↔ 1 = 1 ) )
5 4 imbi1d ( ( sgn ‘ 𝐴 ) = 1 → ( ( ( sgn ‘ 𝐴 ) = 1 → 0 < 𝐴 ) ↔ ( 1 = 1 → 0 < 𝐴 ) ) )
6 eqeq1 ( ( sgn ‘ 𝐴 ) = - 1 → ( ( sgn ‘ 𝐴 ) = 1 ↔ - 1 = 1 ) )
7 6 imbi1d ( ( sgn ‘ 𝐴 ) = - 1 → ( ( ( sgn ‘ 𝐴 ) = 1 → 0 < 𝐴 ) ↔ ( - 1 = 1 → 0 < 𝐴 ) ) )
8 0ne1 0 ≠ 1
9 8 neii ¬ 0 = 1
10 9 pm2.21i ( 0 = 1 → 0 < 𝐴 )
11 10 a1i ( ( 𝐴 ∈ ℝ*𝐴 = 0 ) → ( 0 = 1 → 0 < 𝐴 ) )
12 simp2 ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ∧ 1 = 1 ) → 0 < 𝐴 )
13 12 3expia ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 1 = 1 → 0 < 𝐴 ) )
14 neg1rr - 1 ∈ ℝ
15 neg1lt0 - 1 < 0
16 0lt1 0 < 1
17 0re 0 ∈ ℝ
18 1re 1 ∈ ℝ
19 14 17 18 lttri ( ( - 1 < 0 ∧ 0 < 1 ) → - 1 < 1 )
20 15 16 19 mp2an - 1 < 1
21 14 20 gtneii 1 ≠ - 1
22 21 nesymi ¬ - 1 = 1
23 22 pm2.21i ( - 1 = 1 → 0 < 𝐴 )
24 23 a1i ( ( 𝐴 ∈ ℝ*𝐴 < 0 ) → ( - 1 = 1 → 0 < 𝐴 ) )
25 1 3 5 7 11 13 24 sgn3da ( 𝐴 ∈ ℝ* → ( ( sgn ‘ 𝐴 ) = 1 → 0 < 𝐴 ) )
26 25 imp ( ( 𝐴 ∈ ℝ* ∧ ( sgn ‘ 𝐴 ) = 1 ) → 0 < 𝐴 )
27 sgnp ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( sgn ‘ 𝐴 ) = 1 )
28 26 27 impbida ( 𝐴 ∈ ℝ* → ( ( sgn ‘ 𝐴 ) = 1 ↔ 0 < 𝐴 ) )