| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( 𝐴 ∈ ℝ* → 𝐴 ∈ ℝ* ) |
| 2 |
|
eqeq1 |
⊢ ( ( sgn ‘ 𝐴 ) = 0 → ( ( sgn ‘ 𝐴 ) = 1 ↔ 0 = 1 ) ) |
| 3 |
2
|
imbi1d |
⊢ ( ( sgn ‘ 𝐴 ) = 0 → ( ( ( sgn ‘ 𝐴 ) = 1 → 0 < 𝐴 ) ↔ ( 0 = 1 → 0 < 𝐴 ) ) ) |
| 4 |
|
eqeq1 |
⊢ ( ( sgn ‘ 𝐴 ) = 1 → ( ( sgn ‘ 𝐴 ) = 1 ↔ 1 = 1 ) ) |
| 5 |
4
|
imbi1d |
⊢ ( ( sgn ‘ 𝐴 ) = 1 → ( ( ( sgn ‘ 𝐴 ) = 1 → 0 < 𝐴 ) ↔ ( 1 = 1 → 0 < 𝐴 ) ) ) |
| 6 |
|
eqeq1 |
⊢ ( ( sgn ‘ 𝐴 ) = - 1 → ( ( sgn ‘ 𝐴 ) = 1 ↔ - 1 = 1 ) ) |
| 7 |
6
|
imbi1d |
⊢ ( ( sgn ‘ 𝐴 ) = - 1 → ( ( ( sgn ‘ 𝐴 ) = 1 → 0 < 𝐴 ) ↔ ( - 1 = 1 → 0 < 𝐴 ) ) ) |
| 8 |
|
0ne1 |
⊢ 0 ≠ 1 |
| 9 |
8
|
neii |
⊢ ¬ 0 = 1 |
| 10 |
9
|
pm2.21i |
⊢ ( 0 = 1 → 0 < 𝐴 ) |
| 11 |
10
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 = 0 ) → ( 0 = 1 → 0 < 𝐴 ) ) |
| 12 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ∧ 1 = 1 ) → 0 < 𝐴 ) |
| 13 |
12
|
3expia |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 1 = 1 → 0 < 𝐴 ) ) |
| 14 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
| 15 |
|
neg1lt0 |
⊢ - 1 < 0 |
| 16 |
|
0lt1 |
⊢ 0 < 1 |
| 17 |
|
0re |
⊢ 0 ∈ ℝ |
| 18 |
|
1re |
⊢ 1 ∈ ℝ |
| 19 |
14 17 18
|
lttri |
⊢ ( ( - 1 < 0 ∧ 0 < 1 ) → - 1 < 1 ) |
| 20 |
15 16 19
|
mp2an |
⊢ - 1 < 1 |
| 21 |
14 20
|
gtneii |
⊢ 1 ≠ - 1 |
| 22 |
21
|
nesymi |
⊢ ¬ - 1 = 1 |
| 23 |
22
|
pm2.21i |
⊢ ( - 1 = 1 → 0 < 𝐴 ) |
| 24 |
23
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( - 1 = 1 → 0 < 𝐴 ) ) |
| 25 |
1 3 5 7 11 13 24
|
sgn3da |
⊢ ( 𝐴 ∈ ℝ* → ( ( sgn ‘ 𝐴 ) = 1 → 0 < 𝐴 ) ) |
| 26 |
25
|
imp |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ( sgn ‘ 𝐴 ) = 1 ) → 0 < 𝐴 ) |
| 27 |
|
sgnp |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( sgn ‘ 𝐴 ) = 1 ) |
| 28 |
26 27
|
impbida |
⊢ ( 𝐴 ∈ ℝ* → ( ( sgn ‘ 𝐴 ) = 1 ↔ 0 < 𝐴 ) ) |