Metamath Proof Explorer


Theorem sgn0bi

Description: Zero signum. (Contributed by Thierry Arnoux, 10-Oct-2018)

Ref Expression
Assertion sgn0bi ( 𝐴 ∈ ℝ* → ( ( sgn ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) )

Proof

Step Hyp Ref Expression
1 id ( 𝐴 ∈ ℝ*𝐴 ∈ ℝ* )
2 eqeq1 ( ( sgn ‘ 𝐴 ) = 0 → ( ( sgn ‘ 𝐴 ) = 0 ↔ 0 = 0 ) )
3 2 bibi1d ( ( sgn ‘ 𝐴 ) = 0 → ( ( ( sgn ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ↔ ( 0 = 0 ↔ 𝐴 = 0 ) ) )
4 eqeq1 ( ( sgn ‘ 𝐴 ) = 1 → ( ( sgn ‘ 𝐴 ) = 0 ↔ 1 = 0 ) )
5 4 bibi1d ( ( sgn ‘ 𝐴 ) = 1 → ( ( ( sgn ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ↔ ( 1 = 0 ↔ 𝐴 = 0 ) ) )
6 eqeq1 ( ( sgn ‘ 𝐴 ) = - 1 → ( ( sgn ‘ 𝐴 ) = 0 ↔ - 1 = 0 ) )
7 6 bibi1d ( ( sgn ‘ 𝐴 ) = - 1 → ( ( ( sgn ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ↔ ( - 1 = 0 ↔ 𝐴 = 0 ) ) )
8 simpr ( ( 𝐴 ∈ ℝ*𝐴 = 0 ) → 𝐴 = 0 )
9 8 eqcomd ( ( 𝐴 ∈ ℝ*𝐴 = 0 ) → 0 = 𝐴 )
10 9 eqeq1d ( ( 𝐴 ∈ ℝ*𝐴 = 0 ) → ( 0 = 0 ↔ 𝐴 = 0 ) )
11 ax-1ne0 1 ≠ 0
12 11 a1i ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → 1 ≠ 0 )
13 12 neneqd ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ¬ 1 = 0 )
14 simpr ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → 0 < 𝐴 )
15 14 gt0ne0d ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 )
16 15 neneqd ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ¬ 𝐴 = 0 )
17 13 16 2falsed ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 1 = 0 ↔ 𝐴 = 0 ) )
18 1cnd ( ( 𝐴 ∈ ℝ*𝐴 < 0 ) → 1 ∈ ℂ )
19 11 a1i ( ( 𝐴 ∈ ℝ*𝐴 < 0 ) → 1 ≠ 0 )
20 18 19 negne0d ( ( 𝐴 ∈ ℝ*𝐴 < 0 ) → - 1 ≠ 0 )
21 20 neneqd ( ( 𝐴 ∈ ℝ*𝐴 < 0 ) → ¬ - 1 = 0 )
22 simpr ( ( 𝐴 ∈ ℝ*𝐴 < 0 ) → 𝐴 < 0 )
23 22 lt0ne0d ( ( 𝐴 ∈ ℝ*𝐴 < 0 ) → 𝐴 ≠ 0 )
24 23 neneqd ( ( 𝐴 ∈ ℝ*𝐴 < 0 ) → ¬ 𝐴 = 0 )
25 21 24 2falsed ( ( 𝐴 ∈ ℝ*𝐴 < 0 ) → ( - 1 = 0 ↔ 𝐴 = 0 ) )
26 1 3 5 7 10 17 25 sgn3da ( 𝐴 ∈ ℝ* → ( ( sgn ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) )