| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( 𝐴  ∈  ℝ*  →  𝐴  ∈  ℝ* ) | 
						
							| 2 |  | eqeq1 | ⊢ ( ( sgn ‘ 𝐴 )  =  0  →  ( ( sgn ‘ 𝐴 )  =  0  ↔  0  =  0 ) ) | 
						
							| 3 | 2 | bibi1d | ⊢ ( ( sgn ‘ 𝐴 )  =  0  →  ( ( ( sgn ‘ 𝐴 )  =  0  ↔  𝐴  =  0 )  ↔  ( 0  =  0  ↔  𝐴  =  0 ) ) ) | 
						
							| 4 |  | eqeq1 | ⊢ ( ( sgn ‘ 𝐴 )  =  1  →  ( ( sgn ‘ 𝐴 )  =  0  ↔  1  =  0 ) ) | 
						
							| 5 | 4 | bibi1d | ⊢ ( ( sgn ‘ 𝐴 )  =  1  →  ( ( ( sgn ‘ 𝐴 )  =  0  ↔  𝐴  =  0 )  ↔  ( 1  =  0  ↔  𝐴  =  0 ) ) ) | 
						
							| 6 |  | eqeq1 | ⊢ ( ( sgn ‘ 𝐴 )  =  - 1  →  ( ( sgn ‘ 𝐴 )  =  0  ↔  - 1  =  0 ) ) | 
						
							| 7 | 6 | bibi1d | ⊢ ( ( sgn ‘ 𝐴 )  =  - 1  →  ( ( ( sgn ‘ 𝐴 )  =  0  ↔  𝐴  =  0 )  ↔  ( - 1  =  0  ↔  𝐴  =  0 ) ) ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  =  0 )  →  𝐴  =  0 ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  =  0 )  →  0  =  𝐴 ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  =  0 )  →  ( 0  =  0  ↔  𝐴  =  0 ) ) | 
						
							| 11 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  <  𝐴 )  →  1  ≠  0 ) | 
						
							| 13 | 12 | neneqd | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  <  𝐴 )  →  ¬  1  =  0 ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  <  𝐴 )  →  0  <  𝐴 ) | 
						
							| 15 | 14 | gt0ne0d | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  <  𝐴 )  →  𝐴  ≠  0 ) | 
						
							| 16 | 15 | neneqd | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  <  𝐴 )  →  ¬  𝐴  =  0 ) | 
						
							| 17 | 13 16 | 2falsed | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  <  𝐴 )  →  ( 1  =  0  ↔  𝐴  =  0 ) ) | 
						
							| 18 |  | 1cnd | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  0 )  →  1  ∈  ℂ ) | 
						
							| 19 | 11 | a1i | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  0 )  →  1  ≠  0 ) | 
						
							| 20 | 18 19 | negne0d | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  0 )  →  - 1  ≠  0 ) | 
						
							| 21 | 20 | neneqd | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  0 )  →  ¬  - 1  =  0 ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  0 )  →  𝐴  <  0 ) | 
						
							| 23 | 22 | lt0ne0d | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  0 )  →  𝐴  ≠  0 ) | 
						
							| 24 | 23 | neneqd | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  0 )  →  ¬  𝐴  =  0 ) | 
						
							| 25 | 21 24 | 2falsed | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  0 )  →  ( - 1  =  0  ↔  𝐴  =  0 ) ) | 
						
							| 26 | 1 3 5 7 10 17 25 | sgn3da | ⊢ ( 𝐴  ∈  ℝ*  →  ( ( sgn ‘ 𝐴 )  =  0  ↔  𝐴  =  0 ) ) |