| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( 𝐴 ∈ ℝ* → 𝐴 ∈ ℝ* ) |
| 2 |
|
eqeq1 |
⊢ ( ( sgn ‘ 𝐴 ) = 0 → ( ( sgn ‘ 𝐴 ) = 0 ↔ 0 = 0 ) ) |
| 3 |
2
|
bibi1d |
⊢ ( ( sgn ‘ 𝐴 ) = 0 → ( ( ( sgn ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ↔ ( 0 = 0 ↔ 𝐴 = 0 ) ) ) |
| 4 |
|
eqeq1 |
⊢ ( ( sgn ‘ 𝐴 ) = 1 → ( ( sgn ‘ 𝐴 ) = 0 ↔ 1 = 0 ) ) |
| 5 |
4
|
bibi1d |
⊢ ( ( sgn ‘ 𝐴 ) = 1 → ( ( ( sgn ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ↔ ( 1 = 0 ↔ 𝐴 = 0 ) ) ) |
| 6 |
|
eqeq1 |
⊢ ( ( sgn ‘ 𝐴 ) = - 1 → ( ( sgn ‘ 𝐴 ) = 0 ↔ - 1 = 0 ) ) |
| 7 |
6
|
bibi1d |
⊢ ( ( sgn ‘ 𝐴 ) = - 1 → ( ( ( sgn ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ↔ ( - 1 = 0 ↔ 𝐴 = 0 ) ) ) |
| 8 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 = 0 ) → 𝐴 = 0 ) |
| 9 |
8
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 = 0 ) → 0 = 𝐴 ) |
| 10 |
9
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 = 0 ) → ( 0 = 0 ↔ 𝐴 = 0 ) ) |
| 11 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 12 |
11
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → 1 ≠ 0 ) |
| 13 |
12
|
neneqd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ¬ 1 = 0 ) |
| 14 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → 0 < 𝐴 ) |
| 15 |
14
|
gt0ne0d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
| 16 |
15
|
neneqd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ¬ 𝐴 = 0 ) |
| 17 |
13 16
|
2falsed |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 1 = 0 ↔ 𝐴 = 0 ) ) |
| 18 |
|
1cnd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → 1 ∈ ℂ ) |
| 19 |
11
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → 1 ≠ 0 ) |
| 20 |
18 19
|
negne0d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → - 1 ≠ 0 ) |
| 21 |
20
|
neneqd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ¬ - 1 = 0 ) |
| 22 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → 𝐴 < 0 ) |
| 23 |
22
|
lt0ne0d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → 𝐴 ≠ 0 ) |
| 24 |
23
|
neneqd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ¬ 𝐴 = 0 ) |
| 25 |
21 24
|
2falsed |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( - 1 = 0 ↔ 𝐴 = 0 ) ) |
| 26 |
1 3 5 7 10 17 25
|
sgn3da |
⊢ ( 𝐴 ∈ ℝ* → ( ( sgn ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) |