Metamath Proof Explorer


Theorem sgn0bi

Description: Zero signum. (Contributed by Thierry Arnoux, 10-Oct-2018)

Ref Expression
Assertion sgn0bi A * sgn A = 0 A = 0

Proof

Step Hyp Ref Expression
1 id A * A *
2 eqeq1 sgn A = 0 sgn A = 0 0 = 0
3 2 bibi1d sgn A = 0 sgn A = 0 A = 0 0 = 0 A = 0
4 eqeq1 sgn A = 1 sgn A = 0 1 = 0
5 4 bibi1d sgn A = 1 sgn A = 0 A = 0 1 = 0 A = 0
6 eqeq1 sgn A = 1 sgn A = 0 1 = 0
7 6 bibi1d sgn A = 1 sgn A = 0 A = 0 1 = 0 A = 0
8 simpr A * A = 0 A = 0
9 8 eqcomd A * A = 0 0 = A
10 9 eqeq1d A * A = 0 0 = 0 A = 0
11 ax-1ne0 1 0
12 11 a1i A * 0 < A 1 0
13 12 neneqd A * 0 < A ¬ 1 = 0
14 simpr A * 0 < A 0 < A
15 14 gt0ne0d A * 0 < A A 0
16 15 neneqd A * 0 < A ¬ A = 0
17 13 16 2falsed A * 0 < A 1 = 0 A = 0
18 1cnd A * A < 0 1
19 11 a1i A * A < 0 1 0
20 18 19 negne0d A * A < 0 1 0
21 20 neneqd A * A < 0 ¬ 1 = 0
22 simpr A * A < 0 A < 0
23 22 lt0ne0d A * A < 0 A 0
24 23 neneqd A * A < 0 ¬ A = 0
25 21 24 2falsed A * A < 0 1 = 0 A = 0
26 1 3 5 7 10 17 25 sgn3da A * sgn A = 0 A = 0