Metamath Proof Explorer


Theorem sgnsgn

Description: Signum is idempotent. (Contributed by Thierry Arnoux, 2-Oct-2018)

Ref Expression
Assertion sgnsgn A*sgnsgnA=sgnA

Proof

Step Hyp Ref Expression
1 id A*A*
2 fveq2 sgnA=0sgnsgnA=sgn0
3 id sgnA=0sgnA=0
4 2 3 eqeq12d sgnA=0sgnsgnA=sgnAsgn0=0
5 fveq2 sgnA=1sgnsgnA=sgn1
6 id sgnA=1sgnA=1
7 5 6 eqeq12d sgnA=1sgnsgnA=sgnAsgn1=1
8 fveq2 sgnA=1sgnsgnA=sgn1
9 id sgnA=1sgnA=1
10 8 9 eqeq12d sgnA=1sgnsgnA=sgnAsgn1=1
11 sgn0 sgn0=0
12 11 a1i A*A=0sgn0=0
13 sgn1 sgn1=1
14 13 a1i A*0<Asgn1=1
15 neg1rr 1
16 15 rexri 1*
17 neg1lt0 1<0
18 sgnn 1*1<0sgn1=1
19 16 17 18 mp2an sgn1=1
20 19 a1i A*A<0sgn1=1
21 1 4 7 10 12 14 20 sgn3da A*sgnsgnA=sgnA