Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝐴 ∈ ℝ* → 𝐴 ∈ ℝ* ) |
2 |
|
fveq2 |
⊢ ( ( sgn ‘ 𝐴 ) = 0 → ( sgn ‘ ( sgn ‘ 𝐴 ) ) = ( sgn ‘ 0 ) ) |
3 |
|
id |
⊢ ( ( sgn ‘ 𝐴 ) = 0 → ( sgn ‘ 𝐴 ) = 0 ) |
4 |
2 3
|
eqeq12d |
⊢ ( ( sgn ‘ 𝐴 ) = 0 → ( ( sgn ‘ ( sgn ‘ 𝐴 ) ) = ( sgn ‘ 𝐴 ) ↔ ( sgn ‘ 0 ) = 0 ) ) |
5 |
|
fveq2 |
⊢ ( ( sgn ‘ 𝐴 ) = 1 → ( sgn ‘ ( sgn ‘ 𝐴 ) ) = ( sgn ‘ 1 ) ) |
6 |
|
id |
⊢ ( ( sgn ‘ 𝐴 ) = 1 → ( sgn ‘ 𝐴 ) = 1 ) |
7 |
5 6
|
eqeq12d |
⊢ ( ( sgn ‘ 𝐴 ) = 1 → ( ( sgn ‘ ( sgn ‘ 𝐴 ) ) = ( sgn ‘ 𝐴 ) ↔ ( sgn ‘ 1 ) = 1 ) ) |
8 |
|
fveq2 |
⊢ ( ( sgn ‘ 𝐴 ) = - 1 → ( sgn ‘ ( sgn ‘ 𝐴 ) ) = ( sgn ‘ - 1 ) ) |
9 |
|
id |
⊢ ( ( sgn ‘ 𝐴 ) = - 1 → ( sgn ‘ 𝐴 ) = - 1 ) |
10 |
8 9
|
eqeq12d |
⊢ ( ( sgn ‘ 𝐴 ) = - 1 → ( ( sgn ‘ ( sgn ‘ 𝐴 ) ) = ( sgn ‘ 𝐴 ) ↔ ( sgn ‘ - 1 ) = - 1 ) ) |
11 |
|
sgn0 |
⊢ ( sgn ‘ 0 ) = 0 |
12 |
11
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 = 0 ) → ( sgn ‘ 0 ) = 0 ) |
13 |
|
sgn1 |
⊢ ( sgn ‘ 1 ) = 1 |
14 |
13
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( sgn ‘ 1 ) = 1 ) |
15 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
16 |
15
|
rexri |
⊢ - 1 ∈ ℝ* |
17 |
|
neg1lt0 |
⊢ - 1 < 0 |
18 |
|
sgnn |
⊢ ( ( - 1 ∈ ℝ* ∧ - 1 < 0 ) → ( sgn ‘ - 1 ) = - 1 ) |
19 |
16 17 18
|
mp2an |
⊢ ( sgn ‘ - 1 ) = - 1 |
20 |
19
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( sgn ‘ - 1 ) = - 1 ) |
21 |
1 4 7 10 12 14 20
|
sgn3da |
⊢ ( 𝐴 ∈ ℝ* → ( sgn ‘ ( sgn ‘ 𝐴 ) ) = ( sgn ‘ 𝐴 ) ) |