| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( 𝐴  ∈  ℝ*  →  𝐴  ∈  ℝ* ) | 
						
							| 2 |  | fveq2 | ⊢ ( ( sgn ‘ 𝐴 )  =  0  →  ( sgn ‘ ( sgn ‘ 𝐴 ) )  =  ( sgn ‘ 0 ) ) | 
						
							| 3 |  | id | ⊢ ( ( sgn ‘ 𝐴 )  =  0  →  ( sgn ‘ 𝐴 )  =  0 ) | 
						
							| 4 | 2 3 | eqeq12d | ⊢ ( ( sgn ‘ 𝐴 )  =  0  →  ( ( sgn ‘ ( sgn ‘ 𝐴 ) )  =  ( sgn ‘ 𝐴 )  ↔  ( sgn ‘ 0 )  =  0 ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( ( sgn ‘ 𝐴 )  =  1  →  ( sgn ‘ ( sgn ‘ 𝐴 ) )  =  ( sgn ‘ 1 ) ) | 
						
							| 6 |  | id | ⊢ ( ( sgn ‘ 𝐴 )  =  1  →  ( sgn ‘ 𝐴 )  =  1 ) | 
						
							| 7 | 5 6 | eqeq12d | ⊢ ( ( sgn ‘ 𝐴 )  =  1  →  ( ( sgn ‘ ( sgn ‘ 𝐴 ) )  =  ( sgn ‘ 𝐴 )  ↔  ( sgn ‘ 1 )  =  1 ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( ( sgn ‘ 𝐴 )  =  - 1  →  ( sgn ‘ ( sgn ‘ 𝐴 ) )  =  ( sgn ‘ - 1 ) ) | 
						
							| 9 |  | id | ⊢ ( ( sgn ‘ 𝐴 )  =  - 1  →  ( sgn ‘ 𝐴 )  =  - 1 ) | 
						
							| 10 | 8 9 | eqeq12d | ⊢ ( ( sgn ‘ 𝐴 )  =  - 1  →  ( ( sgn ‘ ( sgn ‘ 𝐴 ) )  =  ( sgn ‘ 𝐴 )  ↔  ( sgn ‘ - 1 )  =  - 1 ) ) | 
						
							| 11 |  | sgn0 | ⊢ ( sgn ‘ 0 )  =  0 | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  =  0 )  →  ( sgn ‘ 0 )  =  0 ) | 
						
							| 13 |  | sgn1 | ⊢ ( sgn ‘ 1 )  =  1 | 
						
							| 14 | 13 | a1i | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  <  𝐴 )  →  ( sgn ‘ 1 )  =  1 ) | 
						
							| 15 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 16 | 15 | rexri | ⊢ - 1  ∈  ℝ* | 
						
							| 17 |  | neg1lt0 | ⊢ - 1  <  0 | 
						
							| 18 |  | sgnn | ⊢ ( ( - 1  ∈  ℝ*  ∧  - 1  <  0 )  →  ( sgn ‘ - 1 )  =  - 1 ) | 
						
							| 19 | 16 17 18 | mp2an | ⊢ ( sgn ‘ - 1 )  =  - 1 | 
						
							| 20 | 19 | a1i | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  <  0 )  →  ( sgn ‘ - 1 )  =  - 1 ) | 
						
							| 21 | 1 4 7 10 12 14 20 | sgn3da | ⊢ ( 𝐴  ∈  ℝ*  →  ( sgn ‘ ( sgn ‘ 𝐴 ) )  =  ( sgn ‘ 𝐴 ) ) |