| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neg1lt0 | ⊢ - 1  <  0 | 
						
							| 2 |  | breq1 | ⊢ ( ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  - 1  →  ( ( sgn ‘ ( 𝐴  ·  𝐵 ) )  <  0  ↔  - 1  <  0 ) ) | 
						
							| 3 | 1 2 | mpbiri | ⊢ ( ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  - 1  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  <  0 ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  - 1 )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  <  0 ) | 
						
							| 5 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  <  0 )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  - 1 )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  - 1 ) | 
						
							| 6 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  <  0 )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  0 )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  0 ) | 
						
							| 7 |  | simplr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  <  0 )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  0 )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  <  0 ) | 
						
							| 8 | 7 | lt0ne0d | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  <  0 )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  0 )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  ≠  0 ) | 
						
							| 9 | 6 8 | pm2.21ddne | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  <  0 )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  0 )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  - 1 ) | 
						
							| 10 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  <  0 )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  1 )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  1 ) | 
						
							| 11 |  | simplr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  <  0 )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  1 )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  <  0 ) | 
						
							| 12 | 10 11 | eqbrtrrd | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  <  0 )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  1 )  →  1  <  0 ) | 
						
							| 13 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 14 |  | nn0nlt0 | ⊢ ( 1  ∈  ℕ0  →  ¬  1  <  0 ) | 
						
							| 15 | 13 14 | mp1i | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  <  0 )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  1 )  →  ¬  1  <  0 ) | 
						
							| 16 | 12 15 | pm2.21dd | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  <  0 )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  1 )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  - 1 ) | 
						
							| 17 |  | remulcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ·  𝐵 )  ∈  ℝ ) | 
						
							| 18 | 17 | rexrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ·  𝐵 )  ∈  ℝ* ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  <  0 )  →  ( 𝐴  ·  𝐵 )  ∈  ℝ* ) | 
						
							| 20 |  | sgncl | ⊢ ( ( 𝐴  ·  𝐵 )  ∈  ℝ*  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 21 |  | eltpi | ⊢ ( ( sgn ‘ ( 𝐴  ·  𝐵 ) )  ∈  { - 1 ,  0 ,  1 }  →  ( ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  - 1  ∨  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  0  ∨  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  1 ) ) | 
						
							| 22 | 19 20 21 | 3syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  <  0 )  →  ( ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  - 1  ∨  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  0  ∨  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  1 ) ) | 
						
							| 23 | 5 9 16 22 | mpjao3dan | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  <  0 )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  - 1 ) | 
						
							| 24 | 4 23 | impbida | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  - 1  ↔  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  <  0 ) ) | 
						
							| 25 |  | sgnnbi | ⊢ ( ( 𝐴  ·  𝐵 )  ∈  ℝ*  →  ( ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  - 1  ↔  ( 𝐴  ·  𝐵 )  <  0 ) ) | 
						
							| 26 | 18 25 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  - 1  ↔  ( 𝐴  ·  𝐵 )  <  0 ) ) | 
						
							| 27 |  | sgnmul | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  ( ( sgn ‘ 𝐴 )  ·  ( sgn ‘ 𝐵 ) ) ) | 
						
							| 28 | 27 | breq1d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( sgn ‘ ( 𝐴  ·  𝐵 ) )  <  0  ↔  ( ( sgn ‘ 𝐴 )  ·  ( sgn ‘ 𝐵 ) )  <  0 ) ) | 
						
							| 29 | 24 26 28 | 3bitr3d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐴  ·  𝐵 )  <  0  ↔  ( ( sgn ‘ 𝐴 )  ·  ( sgn ‘ 𝐵 ) )  <  0 ) ) |