| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neg1lt0 |
|- -u 1 < 0 |
| 2 |
|
breq1 |
|- ( ( sgn ` ( A x. B ) ) = -u 1 -> ( ( sgn ` ( A x. B ) ) < 0 <-> -u 1 < 0 ) ) |
| 3 |
1 2
|
mpbiri |
|- ( ( sgn ` ( A x. B ) ) = -u 1 -> ( sgn ` ( A x. B ) ) < 0 ) |
| 4 |
3
|
adantl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) = -u 1 ) -> ( sgn ` ( A x. B ) ) < 0 ) |
| 5 |
|
simpr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) /\ ( sgn ` ( A x. B ) ) = -u 1 ) -> ( sgn ` ( A x. B ) ) = -u 1 ) |
| 6 |
|
simpr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) /\ ( sgn ` ( A x. B ) ) = 0 ) -> ( sgn ` ( A x. B ) ) = 0 ) |
| 7 |
|
simplr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) /\ ( sgn ` ( A x. B ) ) = 0 ) -> ( sgn ` ( A x. B ) ) < 0 ) |
| 8 |
7
|
lt0ne0d |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) /\ ( sgn ` ( A x. B ) ) = 0 ) -> ( sgn ` ( A x. B ) ) =/= 0 ) |
| 9 |
6 8
|
pm2.21ddne |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) /\ ( sgn ` ( A x. B ) ) = 0 ) -> ( sgn ` ( A x. B ) ) = -u 1 ) |
| 10 |
|
simpr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) /\ ( sgn ` ( A x. B ) ) = 1 ) -> ( sgn ` ( A x. B ) ) = 1 ) |
| 11 |
|
simplr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) /\ ( sgn ` ( A x. B ) ) = 1 ) -> ( sgn ` ( A x. B ) ) < 0 ) |
| 12 |
10 11
|
eqbrtrrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) /\ ( sgn ` ( A x. B ) ) = 1 ) -> 1 < 0 ) |
| 13 |
|
1nn0 |
|- 1 e. NN0 |
| 14 |
|
nn0nlt0 |
|- ( 1 e. NN0 -> -. 1 < 0 ) |
| 15 |
13 14
|
mp1i |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) /\ ( sgn ` ( A x. B ) ) = 1 ) -> -. 1 < 0 ) |
| 16 |
12 15
|
pm2.21dd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) /\ ( sgn ` ( A x. B ) ) = 1 ) -> ( sgn ` ( A x. B ) ) = -u 1 ) |
| 17 |
|
remulcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) |
| 18 |
17
|
rexrd |
|- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR* ) |
| 19 |
18
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) -> ( A x. B ) e. RR* ) |
| 20 |
|
sgncl |
|- ( ( A x. B ) e. RR* -> ( sgn ` ( A x. B ) ) e. { -u 1 , 0 , 1 } ) |
| 21 |
|
eltpi |
|- ( ( sgn ` ( A x. B ) ) e. { -u 1 , 0 , 1 } -> ( ( sgn ` ( A x. B ) ) = -u 1 \/ ( sgn ` ( A x. B ) ) = 0 \/ ( sgn ` ( A x. B ) ) = 1 ) ) |
| 22 |
19 20 21
|
3syl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) -> ( ( sgn ` ( A x. B ) ) = -u 1 \/ ( sgn ` ( A x. B ) ) = 0 \/ ( sgn ` ( A x. B ) ) = 1 ) ) |
| 23 |
5 9 16 22
|
mpjao3dan |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) -> ( sgn ` ( A x. B ) ) = -u 1 ) |
| 24 |
4 23
|
impbida |
|- ( ( A e. RR /\ B e. RR ) -> ( ( sgn ` ( A x. B ) ) = -u 1 <-> ( sgn ` ( A x. B ) ) < 0 ) ) |
| 25 |
|
sgnnbi |
|- ( ( A x. B ) e. RR* -> ( ( sgn ` ( A x. B ) ) = -u 1 <-> ( A x. B ) < 0 ) ) |
| 26 |
18 25
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( ( sgn ` ( A x. B ) ) = -u 1 <-> ( A x. B ) < 0 ) ) |
| 27 |
|
sgnmul |
|- ( ( A e. RR /\ B e. RR ) -> ( sgn ` ( A x. B ) ) = ( ( sgn ` A ) x. ( sgn ` B ) ) ) |
| 28 |
27
|
breq1d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( sgn ` ( A x. B ) ) < 0 <-> ( ( sgn ` A ) x. ( sgn ` B ) ) < 0 ) ) |
| 29 |
24 26 28
|
3bitr3d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A x. B ) < 0 <-> ( ( sgn ` A ) x. ( sgn ` B ) ) < 0 ) ) |