| Step | Hyp | Ref | Expression | 
						
							| 1 |  | neg1lt0 |  |-  -u 1 < 0 | 
						
							| 2 |  | breq1 |  |-  ( ( sgn ` ( A x. B ) ) = -u 1 -> ( ( sgn ` ( A x. B ) ) < 0 <-> -u 1 < 0 ) ) | 
						
							| 3 | 1 2 | mpbiri |  |-  ( ( sgn ` ( A x. B ) ) = -u 1 -> ( sgn ` ( A x. B ) ) < 0 ) | 
						
							| 4 | 3 | adantl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) = -u 1 ) -> ( sgn ` ( A x. B ) ) < 0 ) | 
						
							| 5 |  | simpr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) /\ ( sgn ` ( A x. B ) ) = -u 1 ) -> ( sgn ` ( A x. B ) ) = -u 1 ) | 
						
							| 6 |  | simpr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) /\ ( sgn ` ( A x. B ) ) = 0 ) -> ( sgn ` ( A x. B ) ) = 0 ) | 
						
							| 7 |  | simplr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) /\ ( sgn ` ( A x. B ) ) = 0 ) -> ( sgn ` ( A x. B ) ) < 0 ) | 
						
							| 8 | 7 | lt0ne0d |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) /\ ( sgn ` ( A x. B ) ) = 0 ) -> ( sgn ` ( A x. B ) ) =/= 0 ) | 
						
							| 9 | 6 8 | pm2.21ddne |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) /\ ( sgn ` ( A x. B ) ) = 0 ) -> ( sgn ` ( A x. B ) ) = -u 1 ) | 
						
							| 10 |  | simpr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) /\ ( sgn ` ( A x. B ) ) = 1 ) -> ( sgn ` ( A x. B ) ) = 1 ) | 
						
							| 11 |  | simplr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) /\ ( sgn ` ( A x. B ) ) = 1 ) -> ( sgn ` ( A x. B ) ) < 0 ) | 
						
							| 12 | 10 11 | eqbrtrrd |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) /\ ( sgn ` ( A x. B ) ) = 1 ) -> 1 < 0 ) | 
						
							| 13 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 14 |  | nn0nlt0 |  |-  ( 1 e. NN0 -> -. 1 < 0 ) | 
						
							| 15 | 13 14 | mp1i |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) /\ ( sgn ` ( A x. B ) ) = 1 ) -> -. 1 < 0 ) | 
						
							| 16 | 12 15 | pm2.21dd |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) /\ ( sgn ` ( A x. B ) ) = 1 ) -> ( sgn ` ( A x. B ) ) = -u 1 ) | 
						
							| 17 |  | remulcl |  |-  ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) | 
						
							| 18 | 17 | rexrd |  |-  ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR* ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) -> ( A x. B ) e. RR* ) | 
						
							| 20 |  | sgncl |  |-  ( ( A x. B ) e. RR* -> ( sgn ` ( A x. B ) ) e. { -u 1 , 0 , 1 } ) | 
						
							| 21 |  | eltpi |  |-  ( ( sgn ` ( A x. B ) ) e. { -u 1 , 0 , 1 } -> ( ( sgn ` ( A x. B ) ) = -u 1 \/ ( sgn ` ( A x. B ) ) = 0 \/ ( sgn ` ( A x. B ) ) = 1 ) ) | 
						
							| 22 | 19 20 21 | 3syl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) -> ( ( sgn ` ( A x. B ) ) = -u 1 \/ ( sgn ` ( A x. B ) ) = 0 \/ ( sgn ` ( A x. B ) ) = 1 ) ) | 
						
							| 23 | 5 9 16 22 | mpjao3dan |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) < 0 ) -> ( sgn ` ( A x. B ) ) = -u 1 ) | 
						
							| 24 | 4 23 | impbida |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( sgn ` ( A x. B ) ) = -u 1 <-> ( sgn ` ( A x. B ) ) < 0 ) ) | 
						
							| 25 |  | sgnnbi |  |-  ( ( A x. B ) e. RR* -> ( ( sgn ` ( A x. B ) ) = -u 1 <-> ( A x. B ) < 0 ) ) | 
						
							| 26 | 18 25 | syl |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( sgn ` ( A x. B ) ) = -u 1 <-> ( A x. B ) < 0 ) ) | 
						
							| 27 |  | sgnmul |  |-  ( ( A e. RR /\ B e. RR ) -> ( sgn ` ( A x. B ) ) = ( ( sgn ` A ) x. ( sgn ` B ) ) ) | 
						
							| 28 | 27 | breq1d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( sgn ` ( A x. B ) ) < 0 <-> ( ( sgn ` A ) x. ( sgn ` B ) ) < 0 ) ) | 
						
							| 29 | 24 26 28 | 3bitr3d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A x. B ) < 0 <-> ( ( sgn ` A ) x. ( sgn ` B ) ) < 0 ) ) |