| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0lt1 |  |-  0 < 1 | 
						
							| 2 |  | breq2 |  |-  ( ( sgn ` ( A x. B ) ) = 1 -> ( 0 < ( sgn ` ( A x. B ) ) <-> 0 < 1 ) ) | 
						
							| 3 | 1 2 | mpbiri |  |-  ( ( sgn ` ( A x. B ) ) = 1 -> 0 < ( sgn ` ( A x. B ) ) ) | 
						
							| 4 | 3 | adantl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( sgn ` ( A x. B ) ) = 1 ) -> 0 < ( sgn ` ( A x. B ) ) ) | 
						
							| 5 |  | simplr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ 0 < ( sgn ` ( A x. B ) ) ) /\ ( sgn ` ( A x. B ) ) = -u 1 ) -> 0 < ( sgn ` ( A x. B ) ) ) | 
						
							| 6 |  | simpr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ 0 < ( sgn ` ( A x. B ) ) ) /\ ( sgn ` ( A x. B ) ) = -u 1 ) -> ( sgn ` ( A x. B ) ) = -u 1 ) | 
						
							| 7 | 5 6 | breqtrd |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ 0 < ( sgn ` ( A x. B ) ) ) /\ ( sgn ` ( A x. B ) ) = -u 1 ) -> 0 < -u 1 ) | 
						
							| 8 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 9 |  | nn0nlt0 |  |-  ( 1 e. NN0 -> -. 1 < 0 ) | 
						
							| 10 | 8 9 | ax-mp |  |-  -. 1 < 0 | 
						
							| 11 |  | 1re |  |-  1 e. RR | 
						
							| 12 |  | lt0neg1 |  |-  ( 1 e. RR -> ( 1 < 0 <-> 0 < -u 1 ) ) | 
						
							| 13 | 11 12 | ax-mp |  |-  ( 1 < 0 <-> 0 < -u 1 ) | 
						
							| 14 | 10 13 | mtbi |  |-  -. 0 < -u 1 | 
						
							| 15 | 14 | a1i |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ 0 < ( sgn ` ( A x. B ) ) ) /\ ( sgn ` ( A x. B ) ) = -u 1 ) -> -. 0 < -u 1 ) | 
						
							| 16 | 7 15 | pm2.21dd |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ 0 < ( sgn ` ( A x. B ) ) ) /\ ( sgn ` ( A x. B ) ) = -u 1 ) -> ( sgn ` ( A x. B ) ) = 1 ) | 
						
							| 17 |  | simpr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ 0 < ( sgn ` ( A x. B ) ) ) /\ ( sgn ` ( A x. B ) ) = 0 ) -> ( sgn ` ( A x. B ) ) = 0 ) | 
						
							| 18 |  | simplr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ 0 < ( sgn ` ( A x. B ) ) ) /\ ( sgn ` ( A x. B ) ) = 0 ) -> 0 < ( sgn ` ( A x. B ) ) ) | 
						
							| 19 | 18 | gt0ne0d |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ 0 < ( sgn ` ( A x. B ) ) ) /\ ( sgn ` ( A x. B ) ) = 0 ) -> ( sgn ` ( A x. B ) ) =/= 0 ) | 
						
							| 20 | 17 19 | pm2.21ddne |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ 0 < ( sgn ` ( A x. B ) ) ) /\ ( sgn ` ( A x. B ) ) = 0 ) -> ( sgn ` ( A x. B ) ) = 1 ) | 
						
							| 21 |  | simpr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ 0 < ( sgn ` ( A x. B ) ) ) /\ ( sgn ` ( A x. B ) ) = 1 ) -> ( sgn ` ( A x. B ) ) = 1 ) | 
						
							| 22 |  | remulcl |  |-  ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) | 
						
							| 23 | 22 | rexrd |  |-  ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR* ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ 0 < ( sgn ` ( A x. B ) ) ) -> ( A x. B ) e. RR* ) | 
						
							| 25 |  | sgncl |  |-  ( ( A x. B ) e. RR* -> ( sgn ` ( A x. B ) ) e. { -u 1 , 0 , 1 } ) | 
						
							| 26 |  | eltpi |  |-  ( ( sgn ` ( A x. B ) ) e. { -u 1 , 0 , 1 } -> ( ( sgn ` ( A x. B ) ) = -u 1 \/ ( sgn ` ( A x. B ) ) = 0 \/ ( sgn ` ( A x. B ) ) = 1 ) ) | 
						
							| 27 | 24 25 26 | 3syl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ 0 < ( sgn ` ( A x. B ) ) ) -> ( ( sgn ` ( A x. B ) ) = -u 1 \/ ( sgn ` ( A x. B ) ) = 0 \/ ( sgn ` ( A x. B ) ) = 1 ) ) | 
						
							| 28 | 16 20 21 27 | mpjao3dan |  |-  ( ( ( A e. RR /\ B e. RR ) /\ 0 < ( sgn ` ( A x. B ) ) ) -> ( sgn ` ( A x. B ) ) = 1 ) | 
						
							| 29 | 4 28 | impbida |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( sgn ` ( A x. B ) ) = 1 <-> 0 < ( sgn ` ( A x. B ) ) ) ) | 
						
							| 30 |  | sgnpbi |  |-  ( ( A x. B ) e. RR* -> ( ( sgn ` ( A x. B ) ) = 1 <-> 0 < ( A x. B ) ) ) | 
						
							| 31 | 23 30 | syl |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( sgn ` ( A x. B ) ) = 1 <-> 0 < ( A x. B ) ) ) | 
						
							| 32 |  | sgnmul |  |-  ( ( A e. RR /\ B e. RR ) -> ( sgn ` ( A x. B ) ) = ( ( sgn ` A ) x. ( sgn ` B ) ) ) | 
						
							| 33 | 32 | breq2d |  |-  ( ( A e. RR /\ B e. RR ) -> ( 0 < ( sgn ` ( A x. B ) ) <-> 0 < ( ( sgn ` A ) x. ( sgn ` B ) ) ) ) | 
						
							| 34 | 29 31 33 | 3bitr3d |  |-  ( ( A e. RR /\ B e. RR ) -> ( 0 < ( A x. B ) <-> 0 < ( ( sgn ` A ) x. ( sgn ` B ) ) ) ) |