| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzoel2 |  |-  ( K e. ( M ..^ N ) -> N e. ZZ ) | 
						
							| 2 |  | fzoval |  |-  ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( K e. ( M ..^ N ) -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) | 
						
							| 4 | 3 | eleq2d |  |-  ( K e. ( M ..^ N ) -> ( K e. ( M ..^ N ) <-> K e. ( M ... ( N - 1 ) ) ) ) | 
						
							| 5 | 4 | ibi |  |-  ( K e. ( M ..^ N ) -> K e. ( M ... ( N - 1 ) ) ) | 
						
							| 6 |  | elfzuz3 |  |-  ( K e. ( M ... ( N - 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` K ) ) | 
						
							| 7 |  | fzss2 |  |-  ( ( N - 1 ) e. ( ZZ>= ` K ) -> ( M ... K ) C_ ( M ... ( N - 1 ) ) ) | 
						
							| 8 | 5 6 7 | 3syl |  |-  ( K e. ( M ..^ N ) -> ( M ... K ) C_ ( M ... ( N - 1 ) ) ) | 
						
							| 9 | 8 3 | sseqtrrd |  |-  ( K e. ( M ..^ N ) -> ( M ... K ) C_ ( M ..^ N ) ) |