| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzoel2 |
|- ( K e. ( M ..^ N ) -> N e. ZZ ) |
| 2 |
|
fzoval |
|- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 3 |
1 2
|
syl |
|- ( K e. ( M ..^ N ) -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 4 |
3
|
eleq2d |
|- ( K e. ( M ..^ N ) -> ( K e. ( M ..^ N ) <-> K e. ( M ... ( N - 1 ) ) ) ) |
| 5 |
4
|
ibi |
|- ( K e. ( M ..^ N ) -> K e. ( M ... ( N - 1 ) ) ) |
| 6 |
|
elfzuz3 |
|- ( K e. ( M ... ( N - 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` K ) ) |
| 7 |
|
fzss2 |
|- ( ( N - 1 ) e. ( ZZ>= ` K ) -> ( M ... K ) C_ ( M ... ( N - 1 ) ) ) |
| 8 |
5 6 7
|
3syl |
|- ( K e. ( M ..^ N ) -> ( M ... K ) C_ ( M ... ( N - 1 ) ) ) |
| 9 |
8 3
|
sseqtrrd |
|- ( K e. ( M ..^ N ) -> ( M ... K ) C_ ( M ..^ N ) ) |