| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumncl.k |  |-  K = ( Base ` M ) | 
						
							| 2 |  | gsumncl.w |  |-  ( ph -> M e. Mnd ) | 
						
							| 3 |  | gsumncl.p |  |-  ( ph -> P e. ( ZZ>= ` N ) ) | 
						
							| 4 |  | gsumncl.b |  |-  ( ( ph /\ k e. ( N ... P ) ) -> B e. K ) | 
						
							| 5 |  | eqid |  |-  ( +g ` M ) = ( +g ` M ) | 
						
							| 6 | 4 | fmpttd |  |-  ( ph -> ( k e. ( N ... P ) |-> B ) : ( N ... P ) --> K ) | 
						
							| 7 | 1 5 2 3 6 | gsumval2 |  |-  ( ph -> ( M gsum ( k e. ( N ... P ) |-> B ) ) = ( seq N ( ( +g ` M ) , ( k e. ( N ... P ) |-> B ) ) ` P ) ) | 
						
							| 8 | 6 | ffvelcdmda |  |-  ( ( ph /\ x e. ( N ... P ) ) -> ( ( k e. ( N ... P ) |-> B ) ` x ) e. K ) | 
						
							| 9 | 2 | adantr |  |-  ( ( ph /\ ( x e. K /\ y e. K ) ) -> M e. Mnd ) | 
						
							| 10 |  | simprl |  |-  ( ( ph /\ ( x e. K /\ y e. K ) ) -> x e. K ) | 
						
							| 11 |  | simprr |  |-  ( ( ph /\ ( x e. K /\ y e. K ) ) -> y e. K ) | 
						
							| 12 | 1 5 | mndcl |  |-  ( ( M e. Mnd /\ x e. K /\ y e. K ) -> ( x ( +g ` M ) y ) e. K ) | 
						
							| 13 | 9 10 11 12 | syl3anc |  |-  ( ( ph /\ ( x e. K /\ y e. K ) ) -> ( x ( +g ` M ) y ) e. K ) | 
						
							| 14 | 3 8 13 | seqcl |  |-  ( ph -> ( seq N ( ( +g ` M ) , ( k e. ( N ... P ) |-> B ) ) ` P ) e. K ) | 
						
							| 15 | 7 14 | eqeltrd |  |-  ( ph -> ( M gsum ( k e. ( N ... P ) |-> B ) ) e. K ) |