Step |
Hyp |
Ref |
Expression |
1 |
|
gsumncl.k |
⊢ 𝐾 = ( Base ‘ 𝑀 ) |
2 |
|
gsumncl.w |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
3 |
|
gsumncl.p |
⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
4 |
|
gsumncl.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑁 ... 𝑃 ) ) → 𝐵 ∈ 𝐾 ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
6 |
4
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝑁 ... 𝑃 ) ↦ 𝐵 ) : ( 𝑁 ... 𝑃 ) ⟶ 𝐾 ) |
7 |
1 5 2 3 6
|
gsumval2 |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑘 ∈ ( 𝑁 ... 𝑃 ) ↦ 𝐵 ) ) = ( seq 𝑁 ( ( +g ‘ 𝑀 ) , ( 𝑘 ∈ ( 𝑁 ... 𝑃 ) ↦ 𝐵 ) ) ‘ 𝑃 ) ) |
8 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑁 ... 𝑃 ) ) → ( ( 𝑘 ∈ ( 𝑁 ... 𝑃 ) ↦ 𝐵 ) ‘ 𝑥 ) ∈ 𝐾 ) |
9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑀 ∈ Mnd ) |
10 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑥 ∈ 𝐾 ) |
11 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → 𝑦 ∈ 𝐾 ) |
12 |
1 5
|
mndcl |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐾 ) |
13 |
9 10 11 12
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐾 ) |
14 |
3 8 13
|
seqcl |
⊢ ( 𝜑 → ( seq 𝑁 ( ( +g ‘ 𝑀 ) , ( 𝑘 ∈ ( 𝑁 ... 𝑃 ) ↦ 𝐵 ) ) ‘ 𝑃 ) ∈ 𝐾 ) |
15 |
7 14
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑀 Σg ( 𝑘 ∈ ( 𝑁 ... 𝑃 ) ↦ 𝐵 ) ) ∈ 𝐾 ) |