Metamath Proof Explorer


Theorem gsumncl

Description: Closure of a group sum in a non-commutative monoid. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Hypotheses gsumncl.k 𝐾 = ( Base ‘ 𝑀 )
gsumncl.w ( 𝜑𝑀 ∈ Mnd )
gsumncl.p ( 𝜑𝑃 ∈ ( ℤ𝑁 ) )
gsumncl.b ( ( 𝜑𝑘 ∈ ( 𝑁 ... 𝑃 ) ) → 𝐵𝐾 )
Assertion gsumncl ( 𝜑 → ( 𝑀 Σg ( 𝑘 ∈ ( 𝑁 ... 𝑃 ) ↦ 𝐵 ) ) ∈ 𝐾 )

Proof

Step Hyp Ref Expression
1 gsumncl.k 𝐾 = ( Base ‘ 𝑀 )
2 gsumncl.w ( 𝜑𝑀 ∈ Mnd )
3 gsumncl.p ( 𝜑𝑃 ∈ ( ℤ𝑁 ) )
4 gsumncl.b ( ( 𝜑𝑘 ∈ ( 𝑁 ... 𝑃 ) ) → 𝐵𝐾 )
5 eqid ( +g𝑀 ) = ( +g𝑀 )
6 4 fmpttd ( 𝜑 → ( 𝑘 ∈ ( 𝑁 ... 𝑃 ) ↦ 𝐵 ) : ( 𝑁 ... 𝑃 ) ⟶ 𝐾 )
7 1 5 2 3 6 gsumval2 ( 𝜑 → ( 𝑀 Σg ( 𝑘 ∈ ( 𝑁 ... 𝑃 ) ↦ 𝐵 ) ) = ( seq 𝑁 ( ( +g𝑀 ) , ( 𝑘 ∈ ( 𝑁 ... 𝑃 ) ↦ 𝐵 ) ) ‘ 𝑃 ) )
8 6 ffvelrnda ( ( 𝜑𝑥 ∈ ( 𝑁 ... 𝑃 ) ) → ( ( 𝑘 ∈ ( 𝑁 ... 𝑃 ) ↦ 𝐵 ) ‘ 𝑥 ) ∈ 𝐾 )
9 2 adantr ( ( 𝜑 ∧ ( 𝑥𝐾𝑦𝐾 ) ) → 𝑀 ∈ Mnd )
10 simprl ( ( 𝜑 ∧ ( 𝑥𝐾𝑦𝐾 ) ) → 𝑥𝐾 )
11 simprr ( ( 𝜑 ∧ ( 𝑥𝐾𝑦𝐾 ) ) → 𝑦𝐾 )
12 1 5 mndcl ( ( 𝑀 ∈ Mnd ∧ 𝑥𝐾𝑦𝐾 ) → ( 𝑥 ( +g𝑀 ) 𝑦 ) ∈ 𝐾 )
13 9 10 11 12 syl3anc ( ( 𝜑 ∧ ( 𝑥𝐾𝑦𝐾 ) ) → ( 𝑥 ( +g𝑀 ) 𝑦 ) ∈ 𝐾 )
14 3 8 13 seqcl ( 𝜑 → ( seq 𝑁 ( ( +g𝑀 ) , ( 𝑘 ∈ ( 𝑁 ... 𝑃 ) ↦ 𝐵 ) ) ‘ 𝑃 ) ∈ 𝐾 )
15 7 14 eqeltrd ( 𝜑 → ( 𝑀 Σg ( 𝑘 ∈ ( 𝑁 ... 𝑃 ) ↦ 𝐵 ) ) ∈ 𝐾 )