| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumncl.k | ⊢ 𝐾  =  ( Base ‘ 𝑀 ) | 
						
							| 2 |  | gsumncl.w | ⊢ ( 𝜑  →  𝑀  ∈  Mnd ) | 
						
							| 3 |  | gsumncl.p | ⊢ ( 𝜑  →  𝑃  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 4 |  | gsumncl.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑁 ... 𝑃 ) )  →  𝐵  ∈  𝐾 ) | 
						
							| 5 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 6 | 4 | fmpttd | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 𝑁 ... 𝑃 )  ↦  𝐵 ) : ( 𝑁 ... 𝑃 ) ⟶ 𝐾 ) | 
						
							| 7 | 1 5 2 3 6 | gsumval2 | ⊢ ( 𝜑  →  ( 𝑀  Σg  ( 𝑘  ∈  ( 𝑁 ... 𝑃 )  ↦  𝐵 ) )  =  ( seq 𝑁 ( ( +g ‘ 𝑀 ) ,  ( 𝑘  ∈  ( 𝑁 ... 𝑃 )  ↦  𝐵 ) ) ‘ 𝑃 ) ) | 
						
							| 8 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑁 ... 𝑃 ) )  →  ( ( 𝑘  ∈  ( 𝑁 ... 𝑃 )  ↦  𝐵 ) ‘ 𝑥 )  ∈  𝐾 ) | 
						
							| 9 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  𝑀  ∈  Mnd ) | 
						
							| 10 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  𝑥  ∈  𝐾 ) | 
						
							| 11 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  𝑦  ∈  𝐾 ) | 
						
							| 12 | 1 5 | mndcl | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑥  ∈  𝐾  ∧  𝑦  ∈  𝐾 )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐾 ) | 
						
							| 13 | 9 10 11 12 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐾  ∧  𝑦  ∈  𝐾 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐾 ) | 
						
							| 14 | 3 8 13 | seqcl | ⊢ ( 𝜑  →  ( seq 𝑁 ( ( +g ‘ 𝑀 ) ,  ( 𝑘  ∈  ( 𝑁 ... 𝑃 )  ↦  𝐵 ) ) ‘ 𝑃 )  ∈  𝐾 ) | 
						
							| 15 | 7 14 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑀  Σg  ( 𝑘  ∈  ( 𝑁 ... 𝑃 )  ↦  𝐵 ) )  ∈  𝐾 ) |