Metamath Proof Explorer


Theorem gsumncl

Description: Closure of a group sum in a non-commutative monoid. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Hypotheses gsumncl.k K=BaseM
gsumncl.w φMMnd
gsumncl.p φPN
gsumncl.b φkNPBK
Assertion gsumncl φMk=NPBK

Proof

Step Hyp Ref Expression
1 gsumncl.k K=BaseM
2 gsumncl.w φMMnd
3 gsumncl.p φPN
4 gsumncl.b φkNPBK
5 eqid +M=+M
6 4 fmpttd φkNPB:NPK
7 1 5 2 3 6 gsumval2 φMk=NPB=seqN+MkNPBP
8 6 ffvelcdmda φxNPkNPBxK
9 2 adantr φxKyKMMnd
10 simprl φxKyKxK
11 simprr φxKyKyK
12 1 5 mndcl MMndxKyKx+MyK
13 9 10 11 12 syl3anc φxKyKx+MyK
14 3 8 13 seqcl φseqN+MkNPBPK
15 7 14 eqeltrd φMk=NPBK