| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumncl.k |
|- K = ( Base ` M ) |
| 2 |
|
gsumncl.w |
|- ( ph -> M e. Mnd ) |
| 3 |
|
gsumncl.p |
|- ( ph -> P e. ( ZZ>= ` N ) ) |
| 4 |
|
gsumncl.b |
|- ( ( ph /\ k e. ( N ... P ) ) -> B e. K ) |
| 5 |
|
gsumnunsn.a |
|- .+ = ( +g ` M ) |
| 6 |
|
gsumnunsn.l |
|- ( ph -> C e. K ) |
| 7 |
|
gsumnunsn.c |
|- ( ( ph /\ k = ( P + 1 ) ) -> B = C ) |
| 8 |
|
seqp1 |
|- ( P e. ( ZZ>= ` N ) -> ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` ( P + 1 ) ) = ( ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` P ) .+ ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` ( P + 1 ) ) ) ) |
| 9 |
3 8
|
syl |
|- ( ph -> ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` ( P + 1 ) ) = ( ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` P ) .+ ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` ( P + 1 ) ) ) ) |
| 10 |
|
peano2uz |
|- ( P e. ( ZZ>= ` N ) -> ( P + 1 ) e. ( ZZ>= ` N ) ) |
| 11 |
3 10
|
syl |
|- ( ph -> ( P + 1 ) e. ( ZZ>= ` N ) ) |
| 12 |
4
|
adantlr |
|- ( ( ( ph /\ k e. ( N ... ( P + 1 ) ) ) /\ k e. ( N ... P ) ) -> B e. K ) |
| 13 |
7
|
adantlr |
|- ( ( ( ph /\ k e. ( N ... ( P + 1 ) ) ) /\ k = ( P + 1 ) ) -> B = C ) |
| 14 |
6
|
ad2antrr |
|- ( ( ( ph /\ k e. ( N ... ( P + 1 ) ) ) /\ k = ( P + 1 ) ) -> C e. K ) |
| 15 |
13 14
|
eqeltrd |
|- ( ( ( ph /\ k e. ( N ... ( P + 1 ) ) ) /\ k = ( P + 1 ) ) -> B e. K ) |
| 16 |
|
elfzp1 |
|- ( P e. ( ZZ>= ` N ) -> ( k e. ( N ... ( P + 1 ) ) <-> ( k e. ( N ... P ) \/ k = ( P + 1 ) ) ) ) |
| 17 |
3 16
|
syl |
|- ( ph -> ( k e. ( N ... ( P + 1 ) ) <-> ( k e. ( N ... P ) \/ k = ( P + 1 ) ) ) ) |
| 18 |
17
|
biimpa |
|- ( ( ph /\ k e. ( N ... ( P + 1 ) ) ) -> ( k e. ( N ... P ) \/ k = ( P + 1 ) ) ) |
| 19 |
12 15 18
|
mpjaodan |
|- ( ( ph /\ k e. ( N ... ( P + 1 ) ) ) -> B e. K ) |
| 20 |
19
|
fmpttd |
|- ( ph -> ( k e. ( N ... ( P + 1 ) ) |-> B ) : ( N ... ( P + 1 ) ) --> K ) |
| 21 |
1 5 2 11 20
|
gsumval2 |
|- ( ph -> ( M gsum ( k e. ( N ... ( P + 1 ) ) |-> B ) ) = ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` ( P + 1 ) ) ) |
| 22 |
4
|
fmpttd |
|- ( ph -> ( k e. ( N ... P ) |-> B ) : ( N ... P ) --> K ) |
| 23 |
1 5 2 3 22
|
gsumval2 |
|- ( ph -> ( M gsum ( k e. ( N ... P ) |-> B ) ) = ( seq N ( .+ , ( k e. ( N ... P ) |-> B ) ) ` P ) ) |
| 24 |
|
fvres |
|- ( i e. ( N ... P ) -> ( ( ( k e. ( N ... ( P + 1 ) ) |-> B ) |` ( N ... P ) ) ` i ) = ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` i ) ) |
| 25 |
24
|
adantl |
|- ( ( ph /\ i e. ( N ... P ) ) -> ( ( ( k e. ( N ... ( P + 1 ) ) |-> B ) |` ( N ... P ) ) ` i ) = ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` i ) ) |
| 26 |
|
fzssp1 |
|- ( N ... P ) C_ ( N ... ( P + 1 ) ) |
| 27 |
|
resmpt |
|- ( ( N ... P ) C_ ( N ... ( P + 1 ) ) -> ( ( k e. ( N ... ( P + 1 ) ) |-> B ) |` ( N ... P ) ) = ( k e. ( N ... P ) |-> B ) ) |
| 28 |
26 27
|
ax-mp |
|- ( ( k e. ( N ... ( P + 1 ) ) |-> B ) |` ( N ... P ) ) = ( k e. ( N ... P ) |-> B ) |
| 29 |
28
|
fveq1i |
|- ( ( ( k e. ( N ... ( P + 1 ) ) |-> B ) |` ( N ... P ) ) ` i ) = ( ( k e. ( N ... P ) |-> B ) ` i ) |
| 30 |
25 29
|
eqtr3di |
|- ( ( ph /\ i e. ( N ... P ) ) -> ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` i ) = ( ( k e. ( N ... P ) |-> B ) ` i ) ) |
| 31 |
3 30
|
seqfveq |
|- ( ph -> ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` P ) = ( seq N ( .+ , ( k e. ( N ... P ) |-> B ) ) ` P ) ) |
| 32 |
23 31
|
eqtr4d |
|- ( ph -> ( M gsum ( k e. ( N ... P ) |-> B ) ) = ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` P ) ) |
| 33 |
|
eqidd |
|- ( ph -> ( k e. ( N ... ( P + 1 ) ) |-> B ) = ( k e. ( N ... ( P + 1 ) ) |-> B ) ) |
| 34 |
|
eluzfz2 |
|- ( ( P + 1 ) e. ( ZZ>= ` N ) -> ( P + 1 ) e. ( N ... ( P + 1 ) ) ) |
| 35 |
11 34
|
syl |
|- ( ph -> ( P + 1 ) e. ( N ... ( P + 1 ) ) ) |
| 36 |
33 7 35 6
|
fvmptd |
|- ( ph -> ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` ( P + 1 ) ) = C ) |
| 37 |
36
|
eqcomd |
|- ( ph -> C = ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` ( P + 1 ) ) ) |
| 38 |
32 37
|
oveq12d |
|- ( ph -> ( ( M gsum ( k e. ( N ... P ) |-> B ) ) .+ C ) = ( ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` P ) .+ ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` ( P + 1 ) ) ) ) |
| 39 |
9 21 38
|
3eqtr4d |
|- ( ph -> ( M gsum ( k e. ( N ... ( P + 1 ) ) |-> B ) ) = ( ( M gsum ( k e. ( N ... P ) |-> B ) ) .+ C ) ) |