Metamath Proof Explorer


Theorem fzssfzo

Description: Condition for an integer interval to be a subset of a half-open integer interval. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Assertion fzssfzo K M ..^ N M K M ..^ N

Proof

Step Hyp Ref Expression
1 elfzoel2 K M ..^ N N
2 fzoval N M ..^ N = M N 1
3 1 2 syl K M ..^ N M ..^ N = M N 1
4 3 eleq2d K M ..^ N K M ..^ N K M N 1
5 4 ibi K M ..^ N K M N 1
6 elfzuz3 K M N 1 N 1 K
7 fzss2 N 1 K M K M N 1
8 5 6 7 3syl K M ..^ N M K M N 1
9 8 3 sseqtrrd K M ..^ N M K M ..^ N