Metamath Proof Explorer


Theorem fzssfzo

Description: Condition for an integer interval to be a subset of a half-open integer interval. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Assertion fzssfzo KM..^NMKM..^N

Proof

Step Hyp Ref Expression
1 elfzoel2 KM..^NN
2 fzoval NM..^N=MN1
3 1 2 syl KM..^NM..^N=MN1
4 3 eleq2d KM..^NKM..^NKMN1
5 4 ibi KM..^NKMN1
6 elfzuz3 KMN1N1K
7 fzss2 N1KMKMN1
8 5 6 7 3syl KM..^NMKMN1
9 8 3 sseqtrrd KM..^NMKM..^N