Step |
Hyp |
Ref |
Expression |
1 |
|
0lt1 |
⊢ 0 < 1 |
2 |
|
breq2 |
⊢ ( ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 1 → ( 0 < ( sgn ‘ ( 𝐴 · 𝐵 ) ) ↔ 0 < 1 ) ) |
3 |
1 2
|
mpbiri |
⊢ ( ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 1 → 0 < ( sgn ‘ ( 𝐴 · 𝐵 ) ) ) |
4 |
3
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 1 ) → 0 < ( sgn ‘ ( 𝐴 · 𝐵 ) ) ) |
5 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( sgn ‘ ( 𝐴 · 𝐵 ) ) ) ∧ ( sgn ‘ ( 𝐴 · 𝐵 ) ) = - 1 ) → 0 < ( sgn ‘ ( 𝐴 · 𝐵 ) ) ) |
6 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( sgn ‘ ( 𝐴 · 𝐵 ) ) ) ∧ ( sgn ‘ ( 𝐴 · 𝐵 ) ) = - 1 ) → ( sgn ‘ ( 𝐴 · 𝐵 ) ) = - 1 ) |
7 |
5 6
|
breqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( sgn ‘ ( 𝐴 · 𝐵 ) ) ) ∧ ( sgn ‘ ( 𝐴 · 𝐵 ) ) = - 1 ) → 0 < - 1 ) |
8 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
9 |
|
nn0nlt0 |
⊢ ( 1 ∈ ℕ0 → ¬ 1 < 0 ) |
10 |
8 9
|
ax-mp |
⊢ ¬ 1 < 0 |
11 |
|
1re |
⊢ 1 ∈ ℝ |
12 |
|
lt0neg1 |
⊢ ( 1 ∈ ℝ → ( 1 < 0 ↔ 0 < - 1 ) ) |
13 |
11 12
|
ax-mp |
⊢ ( 1 < 0 ↔ 0 < - 1 ) |
14 |
10 13
|
mtbi |
⊢ ¬ 0 < - 1 |
15 |
14
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( sgn ‘ ( 𝐴 · 𝐵 ) ) ) ∧ ( sgn ‘ ( 𝐴 · 𝐵 ) ) = - 1 ) → ¬ 0 < - 1 ) |
16 |
7 15
|
pm2.21dd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( sgn ‘ ( 𝐴 · 𝐵 ) ) ) ∧ ( sgn ‘ ( 𝐴 · 𝐵 ) ) = - 1 ) → ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 1 ) |
17 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( sgn ‘ ( 𝐴 · 𝐵 ) ) ) ∧ ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 0 ) → ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 0 ) |
18 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( sgn ‘ ( 𝐴 · 𝐵 ) ) ) ∧ ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 0 ) → 0 < ( sgn ‘ ( 𝐴 · 𝐵 ) ) ) |
19 |
18
|
gt0ne0d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( sgn ‘ ( 𝐴 · 𝐵 ) ) ) ∧ ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 0 ) → ( sgn ‘ ( 𝐴 · 𝐵 ) ) ≠ 0 ) |
20 |
17 19
|
pm2.21ddne |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( sgn ‘ ( 𝐴 · 𝐵 ) ) ) ∧ ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 0 ) → ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 1 ) |
21 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( sgn ‘ ( 𝐴 · 𝐵 ) ) ) ∧ ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 1 ) → ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 1 ) |
22 |
|
remulcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
23 |
22
|
rexrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) ∈ ℝ* ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( sgn ‘ ( 𝐴 · 𝐵 ) ) ) → ( 𝐴 · 𝐵 ) ∈ ℝ* ) |
25 |
|
sgncl |
⊢ ( ( 𝐴 · 𝐵 ) ∈ ℝ* → ( sgn ‘ ( 𝐴 · 𝐵 ) ) ∈ { - 1 , 0 , 1 } ) |
26 |
|
eltpi |
⊢ ( ( sgn ‘ ( 𝐴 · 𝐵 ) ) ∈ { - 1 , 0 , 1 } → ( ( sgn ‘ ( 𝐴 · 𝐵 ) ) = - 1 ∨ ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 0 ∨ ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 1 ) ) |
27 |
24 25 26
|
3syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( sgn ‘ ( 𝐴 · 𝐵 ) ) ) → ( ( sgn ‘ ( 𝐴 · 𝐵 ) ) = - 1 ∨ ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 0 ∨ ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 1 ) ) |
28 |
16 20 21 27
|
mpjao3dan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < ( sgn ‘ ( 𝐴 · 𝐵 ) ) ) → ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 1 ) |
29 |
4 28
|
impbida |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 1 ↔ 0 < ( sgn ‘ ( 𝐴 · 𝐵 ) ) ) ) |
30 |
|
sgnpbi |
⊢ ( ( 𝐴 · 𝐵 ) ∈ ℝ* → ( ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 1 ↔ 0 < ( 𝐴 · 𝐵 ) ) ) |
31 |
23 30
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( sgn ‘ ( 𝐴 · 𝐵 ) ) = 1 ↔ 0 < ( 𝐴 · 𝐵 ) ) ) |
32 |
|
sgnmul |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( sgn ‘ ( 𝐴 · 𝐵 ) ) = ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ) |
33 |
32
|
breq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < ( sgn ‘ ( 𝐴 · 𝐵 ) ) ↔ 0 < ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ) ) |
34 |
29 31 33
|
3bitr3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < ( 𝐴 · 𝐵 ) ↔ 0 < ( ( sgn ‘ 𝐴 ) · ( sgn ‘ 𝐵 ) ) ) ) |