| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 2 |  | breq2 | ⊢ ( ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  1  →  ( 0  <  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  ↔  0  <  1 ) ) | 
						
							| 3 | 1 2 | mpbiri | ⊢ ( ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  1  →  0  <  ( sgn ‘ ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  1 )  →  0  <  ( sgn ‘ ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 5 |  | simplr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  0  <  ( sgn ‘ ( 𝐴  ·  𝐵 ) ) )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  - 1 )  →  0  <  ( sgn ‘ ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 6 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  0  <  ( sgn ‘ ( 𝐴  ·  𝐵 ) ) )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  - 1 )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  - 1 ) | 
						
							| 7 | 5 6 | breqtrd | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  0  <  ( sgn ‘ ( 𝐴  ·  𝐵 ) ) )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  - 1 )  →  0  <  - 1 ) | 
						
							| 8 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 9 |  | nn0nlt0 | ⊢ ( 1  ∈  ℕ0  →  ¬  1  <  0 ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ ¬  1  <  0 | 
						
							| 11 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 12 |  | lt0neg1 | ⊢ ( 1  ∈  ℝ  →  ( 1  <  0  ↔  0  <  - 1 ) ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ ( 1  <  0  ↔  0  <  - 1 ) | 
						
							| 14 | 10 13 | mtbi | ⊢ ¬  0  <  - 1 | 
						
							| 15 | 14 | a1i | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  0  <  ( sgn ‘ ( 𝐴  ·  𝐵 ) ) )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  - 1 )  →  ¬  0  <  - 1 ) | 
						
							| 16 | 7 15 | pm2.21dd | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  0  <  ( sgn ‘ ( 𝐴  ·  𝐵 ) ) )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  - 1 )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  1 ) | 
						
							| 17 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  0  <  ( sgn ‘ ( 𝐴  ·  𝐵 ) ) )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  0 )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  0 ) | 
						
							| 18 |  | simplr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  0  <  ( sgn ‘ ( 𝐴  ·  𝐵 ) ) )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  0 )  →  0  <  ( sgn ‘ ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 19 | 18 | gt0ne0d | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  0  <  ( sgn ‘ ( 𝐴  ·  𝐵 ) ) )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  0 )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  ≠  0 ) | 
						
							| 20 | 17 19 | pm2.21ddne | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  0  <  ( sgn ‘ ( 𝐴  ·  𝐵 ) ) )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  0 )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  1 ) | 
						
							| 21 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  0  <  ( sgn ‘ ( 𝐴  ·  𝐵 ) ) )  ∧  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  1 )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  1 ) | 
						
							| 22 |  | remulcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ·  𝐵 )  ∈  ℝ ) | 
						
							| 23 | 22 | rexrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ·  𝐵 )  ∈  ℝ* ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  0  <  ( sgn ‘ ( 𝐴  ·  𝐵 ) ) )  →  ( 𝐴  ·  𝐵 )  ∈  ℝ* ) | 
						
							| 25 |  | sgncl | ⊢ ( ( 𝐴  ·  𝐵 )  ∈  ℝ*  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 26 |  | eltpi | ⊢ ( ( sgn ‘ ( 𝐴  ·  𝐵 ) )  ∈  { - 1 ,  0 ,  1 }  →  ( ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  - 1  ∨  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  0  ∨  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  1 ) ) | 
						
							| 27 | 24 25 26 | 3syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  0  <  ( sgn ‘ ( 𝐴  ·  𝐵 ) ) )  →  ( ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  - 1  ∨  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  0  ∨  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  1 ) ) | 
						
							| 28 | 16 20 21 27 | mpjao3dan | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  0  <  ( sgn ‘ ( 𝐴  ·  𝐵 ) ) )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  1 ) | 
						
							| 29 | 4 28 | impbida | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  1  ↔  0  <  ( sgn ‘ ( 𝐴  ·  𝐵 ) ) ) ) | 
						
							| 30 |  | sgnpbi | ⊢ ( ( 𝐴  ·  𝐵 )  ∈  ℝ*  →  ( ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  1  ↔  0  <  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 31 | 23 30 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  1  ↔  0  <  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 32 |  | sgnmul | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  =  ( ( sgn ‘ 𝐴 )  ·  ( sgn ‘ 𝐵 ) ) ) | 
						
							| 33 | 32 | breq2d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 0  <  ( sgn ‘ ( 𝐴  ·  𝐵 ) )  ↔  0  <  ( ( sgn ‘ 𝐴 )  ·  ( sgn ‘ 𝐵 ) ) ) ) | 
						
							| 34 | 29 31 33 | 3bitr3d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 0  <  ( 𝐴  ·  𝐵 )  ↔  0  <  ( ( sgn ‘ 𝐴 )  ·  ( sgn ‘ 𝐵 ) ) ) ) |