Metamath Proof Explorer


Theorem sgnmulsgp

Description: If two real numbers are of different signs, so are their signs. (Contributed by Thierry Arnoux, 12-Oct-2018)

Ref Expression
Assertion sgnmulsgp A B 0 < A B 0 < sgn A sgn B

Proof

Step Hyp Ref Expression
1 0lt1 0 < 1
2 breq2 sgn A B = 1 0 < sgn A B 0 < 1
3 1 2 mpbiri sgn A B = 1 0 < sgn A B
4 3 adantl A B sgn A B = 1 0 < sgn A B
5 simplr A B 0 < sgn A B sgn A B = 1 0 < sgn A B
6 simpr A B 0 < sgn A B sgn A B = 1 sgn A B = 1
7 5 6 breqtrd A B 0 < sgn A B sgn A B = 1 0 < 1
8 1nn0 1 0
9 nn0nlt0 1 0 ¬ 1 < 0
10 8 9 ax-mp ¬ 1 < 0
11 1re 1
12 lt0neg1 1 1 < 0 0 < 1
13 11 12 ax-mp 1 < 0 0 < 1
14 10 13 mtbi ¬ 0 < 1
15 14 a1i A B 0 < sgn A B sgn A B = 1 ¬ 0 < 1
16 7 15 pm2.21dd A B 0 < sgn A B sgn A B = 1 sgn A B = 1
17 simpr A B 0 < sgn A B sgn A B = 0 sgn A B = 0
18 simplr A B 0 < sgn A B sgn A B = 0 0 < sgn A B
19 18 gt0ne0d A B 0 < sgn A B sgn A B = 0 sgn A B 0
20 17 19 pm2.21ddne A B 0 < sgn A B sgn A B = 0 sgn A B = 1
21 simpr A B 0 < sgn A B sgn A B = 1 sgn A B = 1
22 remulcl A B A B
23 22 rexrd A B A B *
24 23 adantr A B 0 < sgn A B A B *
25 sgncl A B * sgn A B 1 0 1
26 eltpi sgn A B 1 0 1 sgn A B = 1 sgn A B = 0 sgn A B = 1
27 24 25 26 3syl A B 0 < sgn A B sgn A B = 1 sgn A B = 0 sgn A B = 1
28 16 20 21 27 mpjao3dan A B 0 < sgn A B sgn A B = 1
29 4 28 impbida A B sgn A B = 1 0 < sgn A B
30 sgnpbi A B * sgn A B = 1 0 < A B
31 23 30 syl A B sgn A B = 1 0 < A B
32 sgnmul A B sgn A B = sgn A sgn B
33 32 breq2d A B 0 < sgn A B 0 < sgn A sgn B
34 29 31 33 3bitr3d A B 0 < A B 0 < sgn A sgn B