| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( A e. RR* -> A e. RR* ) |
| 2 |
|
fveq2 |
|- ( ( sgn ` A ) = 0 -> ( sgn ` ( sgn ` A ) ) = ( sgn ` 0 ) ) |
| 3 |
|
id |
|- ( ( sgn ` A ) = 0 -> ( sgn ` A ) = 0 ) |
| 4 |
2 3
|
eqeq12d |
|- ( ( sgn ` A ) = 0 -> ( ( sgn ` ( sgn ` A ) ) = ( sgn ` A ) <-> ( sgn ` 0 ) = 0 ) ) |
| 5 |
|
fveq2 |
|- ( ( sgn ` A ) = 1 -> ( sgn ` ( sgn ` A ) ) = ( sgn ` 1 ) ) |
| 6 |
|
id |
|- ( ( sgn ` A ) = 1 -> ( sgn ` A ) = 1 ) |
| 7 |
5 6
|
eqeq12d |
|- ( ( sgn ` A ) = 1 -> ( ( sgn ` ( sgn ` A ) ) = ( sgn ` A ) <-> ( sgn ` 1 ) = 1 ) ) |
| 8 |
|
fveq2 |
|- ( ( sgn ` A ) = -u 1 -> ( sgn ` ( sgn ` A ) ) = ( sgn ` -u 1 ) ) |
| 9 |
|
id |
|- ( ( sgn ` A ) = -u 1 -> ( sgn ` A ) = -u 1 ) |
| 10 |
8 9
|
eqeq12d |
|- ( ( sgn ` A ) = -u 1 -> ( ( sgn ` ( sgn ` A ) ) = ( sgn ` A ) <-> ( sgn ` -u 1 ) = -u 1 ) ) |
| 11 |
|
sgn0 |
|- ( sgn ` 0 ) = 0 |
| 12 |
11
|
a1i |
|- ( ( A e. RR* /\ A = 0 ) -> ( sgn ` 0 ) = 0 ) |
| 13 |
|
sgn1 |
|- ( sgn ` 1 ) = 1 |
| 14 |
13
|
a1i |
|- ( ( A e. RR* /\ 0 < A ) -> ( sgn ` 1 ) = 1 ) |
| 15 |
|
neg1rr |
|- -u 1 e. RR |
| 16 |
15
|
rexri |
|- -u 1 e. RR* |
| 17 |
|
neg1lt0 |
|- -u 1 < 0 |
| 18 |
|
sgnn |
|- ( ( -u 1 e. RR* /\ -u 1 < 0 ) -> ( sgn ` -u 1 ) = -u 1 ) |
| 19 |
16 17 18
|
mp2an |
|- ( sgn ` -u 1 ) = -u 1 |
| 20 |
19
|
a1i |
|- ( ( A e. RR* /\ A < 0 ) -> ( sgn ` -u 1 ) = -u 1 ) |
| 21 |
1 4 7 10 12 14 20
|
sgn3da |
|- ( A e. RR* -> ( sgn ` ( sgn ` A ) ) = ( sgn ` A ) ) |