Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( A e. RR* -> A e. RR* ) |
2 |
|
fveq2 |
|- ( ( sgn ` A ) = 0 -> ( sgn ` ( sgn ` A ) ) = ( sgn ` 0 ) ) |
3 |
|
id |
|- ( ( sgn ` A ) = 0 -> ( sgn ` A ) = 0 ) |
4 |
2 3
|
eqeq12d |
|- ( ( sgn ` A ) = 0 -> ( ( sgn ` ( sgn ` A ) ) = ( sgn ` A ) <-> ( sgn ` 0 ) = 0 ) ) |
5 |
|
fveq2 |
|- ( ( sgn ` A ) = 1 -> ( sgn ` ( sgn ` A ) ) = ( sgn ` 1 ) ) |
6 |
|
id |
|- ( ( sgn ` A ) = 1 -> ( sgn ` A ) = 1 ) |
7 |
5 6
|
eqeq12d |
|- ( ( sgn ` A ) = 1 -> ( ( sgn ` ( sgn ` A ) ) = ( sgn ` A ) <-> ( sgn ` 1 ) = 1 ) ) |
8 |
|
fveq2 |
|- ( ( sgn ` A ) = -u 1 -> ( sgn ` ( sgn ` A ) ) = ( sgn ` -u 1 ) ) |
9 |
|
id |
|- ( ( sgn ` A ) = -u 1 -> ( sgn ` A ) = -u 1 ) |
10 |
8 9
|
eqeq12d |
|- ( ( sgn ` A ) = -u 1 -> ( ( sgn ` ( sgn ` A ) ) = ( sgn ` A ) <-> ( sgn ` -u 1 ) = -u 1 ) ) |
11 |
|
sgn0 |
|- ( sgn ` 0 ) = 0 |
12 |
11
|
a1i |
|- ( ( A e. RR* /\ A = 0 ) -> ( sgn ` 0 ) = 0 ) |
13 |
|
sgn1 |
|- ( sgn ` 1 ) = 1 |
14 |
13
|
a1i |
|- ( ( A e. RR* /\ 0 < A ) -> ( sgn ` 1 ) = 1 ) |
15 |
|
neg1rr |
|- -u 1 e. RR |
16 |
15
|
rexri |
|- -u 1 e. RR* |
17 |
|
neg1lt0 |
|- -u 1 < 0 |
18 |
|
sgnn |
|- ( ( -u 1 e. RR* /\ -u 1 < 0 ) -> ( sgn ` -u 1 ) = -u 1 ) |
19 |
16 17 18
|
mp2an |
|- ( sgn ` -u 1 ) = -u 1 |
20 |
19
|
a1i |
|- ( ( A e. RR* /\ A < 0 ) -> ( sgn ` -u 1 ) = -u 1 ) |
21 |
1 4 7 10 12 14 20
|
sgn3da |
|- ( A e. RR* -> ( sgn ` ( sgn ` A ) ) = ( sgn ` A ) ) |