| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id |  |-  ( A e. RR* -> A e. RR* ) | 
						
							| 2 |  | fveq2 |  |-  ( ( sgn ` A ) = 0 -> ( sgn ` ( sgn ` A ) ) = ( sgn ` 0 ) ) | 
						
							| 3 |  | id |  |-  ( ( sgn ` A ) = 0 -> ( sgn ` A ) = 0 ) | 
						
							| 4 | 2 3 | eqeq12d |  |-  ( ( sgn ` A ) = 0 -> ( ( sgn ` ( sgn ` A ) ) = ( sgn ` A ) <-> ( sgn ` 0 ) = 0 ) ) | 
						
							| 5 |  | fveq2 |  |-  ( ( sgn ` A ) = 1 -> ( sgn ` ( sgn ` A ) ) = ( sgn ` 1 ) ) | 
						
							| 6 |  | id |  |-  ( ( sgn ` A ) = 1 -> ( sgn ` A ) = 1 ) | 
						
							| 7 | 5 6 | eqeq12d |  |-  ( ( sgn ` A ) = 1 -> ( ( sgn ` ( sgn ` A ) ) = ( sgn ` A ) <-> ( sgn ` 1 ) = 1 ) ) | 
						
							| 8 |  | fveq2 |  |-  ( ( sgn ` A ) = -u 1 -> ( sgn ` ( sgn ` A ) ) = ( sgn ` -u 1 ) ) | 
						
							| 9 |  | id |  |-  ( ( sgn ` A ) = -u 1 -> ( sgn ` A ) = -u 1 ) | 
						
							| 10 | 8 9 | eqeq12d |  |-  ( ( sgn ` A ) = -u 1 -> ( ( sgn ` ( sgn ` A ) ) = ( sgn ` A ) <-> ( sgn ` -u 1 ) = -u 1 ) ) | 
						
							| 11 |  | sgn0 |  |-  ( sgn ` 0 ) = 0 | 
						
							| 12 | 11 | a1i |  |-  ( ( A e. RR* /\ A = 0 ) -> ( sgn ` 0 ) = 0 ) | 
						
							| 13 |  | sgn1 |  |-  ( sgn ` 1 ) = 1 | 
						
							| 14 | 13 | a1i |  |-  ( ( A e. RR* /\ 0 < A ) -> ( sgn ` 1 ) = 1 ) | 
						
							| 15 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 16 | 15 | rexri |  |-  -u 1 e. RR* | 
						
							| 17 |  | neg1lt0 |  |-  -u 1 < 0 | 
						
							| 18 |  | sgnn |  |-  ( ( -u 1 e. RR* /\ -u 1 < 0 ) -> ( sgn ` -u 1 ) = -u 1 ) | 
						
							| 19 | 16 17 18 | mp2an |  |-  ( sgn ` -u 1 ) = -u 1 | 
						
							| 20 | 19 | a1i |  |-  ( ( A e. RR* /\ A < 0 ) -> ( sgn ` -u 1 ) = -u 1 ) | 
						
							| 21 | 1 4 7 10 12 14 20 | sgn3da |  |-  ( A e. RR* -> ( sgn ` ( sgn ` A ) ) = ( sgn ` A ) ) |