Metamath Proof Explorer


Theorem sgn0bi

Description: Zero signum. (Contributed by Thierry Arnoux, 10-Oct-2018)

Ref Expression
Assertion sgn0bi
|- ( A e. RR* -> ( ( sgn ` A ) = 0 <-> A = 0 ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( A e. RR* -> A e. RR* )
2 eqeq1
 |-  ( ( sgn ` A ) = 0 -> ( ( sgn ` A ) = 0 <-> 0 = 0 ) )
3 2 bibi1d
 |-  ( ( sgn ` A ) = 0 -> ( ( ( sgn ` A ) = 0 <-> A = 0 ) <-> ( 0 = 0 <-> A = 0 ) ) )
4 eqeq1
 |-  ( ( sgn ` A ) = 1 -> ( ( sgn ` A ) = 0 <-> 1 = 0 ) )
5 4 bibi1d
 |-  ( ( sgn ` A ) = 1 -> ( ( ( sgn ` A ) = 0 <-> A = 0 ) <-> ( 1 = 0 <-> A = 0 ) ) )
6 eqeq1
 |-  ( ( sgn ` A ) = -u 1 -> ( ( sgn ` A ) = 0 <-> -u 1 = 0 ) )
7 6 bibi1d
 |-  ( ( sgn ` A ) = -u 1 -> ( ( ( sgn ` A ) = 0 <-> A = 0 ) <-> ( -u 1 = 0 <-> A = 0 ) ) )
8 simpr
 |-  ( ( A e. RR* /\ A = 0 ) -> A = 0 )
9 8 eqcomd
 |-  ( ( A e. RR* /\ A = 0 ) -> 0 = A )
10 9 eqeq1d
 |-  ( ( A e. RR* /\ A = 0 ) -> ( 0 = 0 <-> A = 0 ) )
11 ax-1ne0
 |-  1 =/= 0
12 11 a1i
 |-  ( ( A e. RR* /\ 0 < A ) -> 1 =/= 0 )
13 12 neneqd
 |-  ( ( A e. RR* /\ 0 < A ) -> -. 1 = 0 )
14 simpr
 |-  ( ( A e. RR* /\ 0 < A ) -> 0 < A )
15 14 gt0ne0d
 |-  ( ( A e. RR* /\ 0 < A ) -> A =/= 0 )
16 15 neneqd
 |-  ( ( A e. RR* /\ 0 < A ) -> -. A = 0 )
17 13 16 2falsed
 |-  ( ( A e. RR* /\ 0 < A ) -> ( 1 = 0 <-> A = 0 ) )
18 1cnd
 |-  ( ( A e. RR* /\ A < 0 ) -> 1 e. CC )
19 11 a1i
 |-  ( ( A e. RR* /\ A < 0 ) -> 1 =/= 0 )
20 18 19 negne0d
 |-  ( ( A e. RR* /\ A < 0 ) -> -u 1 =/= 0 )
21 20 neneqd
 |-  ( ( A e. RR* /\ A < 0 ) -> -. -u 1 = 0 )
22 simpr
 |-  ( ( A e. RR* /\ A < 0 ) -> A < 0 )
23 22 lt0ne0d
 |-  ( ( A e. RR* /\ A < 0 ) -> A =/= 0 )
24 23 neneqd
 |-  ( ( A e. RR* /\ A < 0 ) -> -. A = 0 )
25 21 24 2falsed
 |-  ( ( A e. RR* /\ A < 0 ) -> ( -u 1 = 0 <-> A = 0 ) )
26 1 3 5 7 10 17 25 sgn3da
 |-  ( A e. RR* -> ( ( sgn ` A ) = 0 <-> A = 0 ) )