| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id |  |-  ( A e. RR* -> A e. RR* ) | 
						
							| 2 |  | eqeq1 |  |-  ( ( sgn ` A ) = 0 -> ( ( sgn ` A ) = 0 <-> 0 = 0 ) ) | 
						
							| 3 | 2 | bibi1d |  |-  ( ( sgn ` A ) = 0 -> ( ( ( sgn ` A ) = 0 <-> A = 0 ) <-> ( 0 = 0 <-> A = 0 ) ) ) | 
						
							| 4 |  | eqeq1 |  |-  ( ( sgn ` A ) = 1 -> ( ( sgn ` A ) = 0 <-> 1 = 0 ) ) | 
						
							| 5 | 4 | bibi1d |  |-  ( ( sgn ` A ) = 1 -> ( ( ( sgn ` A ) = 0 <-> A = 0 ) <-> ( 1 = 0 <-> A = 0 ) ) ) | 
						
							| 6 |  | eqeq1 |  |-  ( ( sgn ` A ) = -u 1 -> ( ( sgn ` A ) = 0 <-> -u 1 = 0 ) ) | 
						
							| 7 | 6 | bibi1d |  |-  ( ( sgn ` A ) = -u 1 -> ( ( ( sgn ` A ) = 0 <-> A = 0 ) <-> ( -u 1 = 0 <-> A = 0 ) ) ) | 
						
							| 8 |  | simpr |  |-  ( ( A e. RR* /\ A = 0 ) -> A = 0 ) | 
						
							| 9 | 8 | eqcomd |  |-  ( ( A e. RR* /\ A = 0 ) -> 0 = A ) | 
						
							| 10 | 9 | eqeq1d |  |-  ( ( A e. RR* /\ A = 0 ) -> ( 0 = 0 <-> A = 0 ) ) | 
						
							| 11 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 12 | 11 | a1i |  |-  ( ( A e. RR* /\ 0 < A ) -> 1 =/= 0 ) | 
						
							| 13 | 12 | neneqd |  |-  ( ( A e. RR* /\ 0 < A ) -> -. 1 = 0 ) | 
						
							| 14 |  | simpr |  |-  ( ( A e. RR* /\ 0 < A ) -> 0 < A ) | 
						
							| 15 | 14 | gt0ne0d |  |-  ( ( A e. RR* /\ 0 < A ) -> A =/= 0 ) | 
						
							| 16 | 15 | neneqd |  |-  ( ( A e. RR* /\ 0 < A ) -> -. A = 0 ) | 
						
							| 17 | 13 16 | 2falsed |  |-  ( ( A e. RR* /\ 0 < A ) -> ( 1 = 0 <-> A = 0 ) ) | 
						
							| 18 |  | 1cnd |  |-  ( ( A e. RR* /\ A < 0 ) -> 1 e. CC ) | 
						
							| 19 | 11 | a1i |  |-  ( ( A e. RR* /\ A < 0 ) -> 1 =/= 0 ) | 
						
							| 20 | 18 19 | negne0d |  |-  ( ( A e. RR* /\ A < 0 ) -> -u 1 =/= 0 ) | 
						
							| 21 | 20 | neneqd |  |-  ( ( A e. RR* /\ A < 0 ) -> -. -u 1 = 0 ) | 
						
							| 22 |  | simpr |  |-  ( ( A e. RR* /\ A < 0 ) -> A < 0 ) | 
						
							| 23 | 22 | lt0ne0d |  |-  ( ( A e. RR* /\ A < 0 ) -> A =/= 0 ) | 
						
							| 24 | 23 | neneqd |  |-  ( ( A e. RR* /\ A < 0 ) -> -. A = 0 ) | 
						
							| 25 | 21 24 | 2falsed |  |-  ( ( A e. RR* /\ A < 0 ) -> ( -u 1 = 0 <-> A = 0 ) ) | 
						
							| 26 | 1 3 5 7 10 17 25 | sgn3da |  |-  ( A e. RR* -> ( ( sgn ` A ) = 0 <-> A = 0 ) ) |