Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( A e. RR* -> A e. RR* ) |
2 |
|
eqeq1 |
|- ( ( sgn ` A ) = 0 -> ( ( sgn ` A ) = 0 <-> 0 = 0 ) ) |
3 |
2
|
bibi1d |
|- ( ( sgn ` A ) = 0 -> ( ( ( sgn ` A ) = 0 <-> A = 0 ) <-> ( 0 = 0 <-> A = 0 ) ) ) |
4 |
|
eqeq1 |
|- ( ( sgn ` A ) = 1 -> ( ( sgn ` A ) = 0 <-> 1 = 0 ) ) |
5 |
4
|
bibi1d |
|- ( ( sgn ` A ) = 1 -> ( ( ( sgn ` A ) = 0 <-> A = 0 ) <-> ( 1 = 0 <-> A = 0 ) ) ) |
6 |
|
eqeq1 |
|- ( ( sgn ` A ) = -u 1 -> ( ( sgn ` A ) = 0 <-> -u 1 = 0 ) ) |
7 |
6
|
bibi1d |
|- ( ( sgn ` A ) = -u 1 -> ( ( ( sgn ` A ) = 0 <-> A = 0 ) <-> ( -u 1 = 0 <-> A = 0 ) ) ) |
8 |
|
simpr |
|- ( ( A e. RR* /\ A = 0 ) -> A = 0 ) |
9 |
8
|
eqcomd |
|- ( ( A e. RR* /\ A = 0 ) -> 0 = A ) |
10 |
9
|
eqeq1d |
|- ( ( A e. RR* /\ A = 0 ) -> ( 0 = 0 <-> A = 0 ) ) |
11 |
|
ax-1ne0 |
|- 1 =/= 0 |
12 |
11
|
a1i |
|- ( ( A e. RR* /\ 0 < A ) -> 1 =/= 0 ) |
13 |
12
|
neneqd |
|- ( ( A e. RR* /\ 0 < A ) -> -. 1 = 0 ) |
14 |
|
simpr |
|- ( ( A e. RR* /\ 0 < A ) -> 0 < A ) |
15 |
14
|
gt0ne0d |
|- ( ( A e. RR* /\ 0 < A ) -> A =/= 0 ) |
16 |
15
|
neneqd |
|- ( ( A e. RR* /\ 0 < A ) -> -. A = 0 ) |
17 |
13 16
|
2falsed |
|- ( ( A e. RR* /\ 0 < A ) -> ( 1 = 0 <-> A = 0 ) ) |
18 |
|
1cnd |
|- ( ( A e. RR* /\ A < 0 ) -> 1 e. CC ) |
19 |
11
|
a1i |
|- ( ( A e. RR* /\ A < 0 ) -> 1 =/= 0 ) |
20 |
18 19
|
negne0d |
|- ( ( A e. RR* /\ A < 0 ) -> -u 1 =/= 0 ) |
21 |
20
|
neneqd |
|- ( ( A e. RR* /\ A < 0 ) -> -. -u 1 = 0 ) |
22 |
|
simpr |
|- ( ( A e. RR* /\ A < 0 ) -> A < 0 ) |
23 |
22
|
lt0ne0d |
|- ( ( A e. RR* /\ A < 0 ) -> A =/= 0 ) |
24 |
23
|
neneqd |
|- ( ( A e. RR* /\ A < 0 ) -> -. A = 0 ) |
25 |
21 24
|
2falsed |
|- ( ( A e. RR* /\ A < 0 ) -> ( -u 1 = 0 <-> A = 0 ) ) |
26 |
1 3 5 7 10 17 25
|
sgn3da |
|- ( A e. RR* -> ( ( sgn ` A ) = 0 <-> A = 0 ) ) |