| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) -> A e. RR ) |
| 2 |
1
|
rexrd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) -> A e. RR* ) |
| 3 |
|
eqeq2 |
|- ( ( sgn ` A ) = 0 -> ( ( sgn ` ( A - B ) ) = ( sgn ` A ) <-> ( sgn ` ( A - B ) ) = 0 ) ) |
| 4 |
|
eqeq2 |
|- ( ( sgn ` A ) = 1 -> ( ( sgn ` ( A - B ) ) = ( sgn ` A ) <-> ( sgn ` ( A - B ) ) = 1 ) ) |
| 5 |
|
eqeq2 |
|- ( ( sgn ` A ) = -u 1 -> ( ( sgn ` ( A - B ) ) = ( sgn ` A ) <-> ( sgn ` ( A - B ) ) = -u 1 ) ) |
| 6 |
|
simpr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A = 0 ) -> A = 0 ) |
| 7 |
1
|
recnd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) -> A e. CC ) |
| 8 |
7
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A = 0 ) -> A e. CC ) |
| 9 |
|
simplr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) -> B e. RR ) |
| 10 |
9
|
recnd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) -> B e. CC ) |
| 11 |
10
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A = 0 ) -> B e. CC ) |
| 12 |
|
simplr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A = 0 ) -> ( A x. B ) < 0 ) |
| 13 |
12
|
lt0ne0d |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A = 0 ) -> ( A x. B ) =/= 0 ) |
| 14 |
8 11 13
|
mulne0bad |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A = 0 ) -> A =/= 0 ) |
| 15 |
6 14
|
pm2.21ddne |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A = 0 ) -> ( sgn ` ( A - B ) ) = 0 ) |
| 16 |
|
simplll |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ 0 < A ) -> A e. RR ) |
| 17 |
|
simpllr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ 0 < A ) -> B e. RR ) |
| 18 |
16 17
|
resubcld |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ 0 < A ) -> ( A - B ) e. RR ) |
| 19 |
18
|
rexrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ 0 < A ) -> ( A - B ) e. RR* ) |
| 20 |
|
0red |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ 0 < A ) -> 0 e. RR ) |
| 21 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) -> ( A x. B ) < 0 ) |
| 22 |
1 9 21
|
mul2lt0lgt0 |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ 0 < A ) -> B < 0 ) |
| 23 |
|
simpr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ 0 < A ) -> 0 < A ) |
| 24 |
17 20 16 22 23
|
lttrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ 0 < A ) -> B < A ) |
| 25 |
|
simpr |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
| 26 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
| 27 |
25 26
|
posdifd |
|- ( ( A e. RR /\ B e. RR ) -> ( B < A <-> 0 < ( A - B ) ) ) |
| 28 |
27
|
biimpa |
|- ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> 0 < ( A - B ) ) |
| 29 |
16 17 24 28
|
syl21anc |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ 0 < A ) -> 0 < ( A - B ) ) |
| 30 |
|
sgnp |
|- ( ( ( A - B ) e. RR* /\ 0 < ( A - B ) ) -> ( sgn ` ( A - B ) ) = 1 ) |
| 31 |
19 29 30
|
syl2anc |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ 0 < A ) -> ( sgn ` ( A - B ) ) = 1 ) |
| 32 |
|
simplll |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> A e. RR ) |
| 33 |
|
simpllr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> B e. RR ) |
| 34 |
32 33
|
resubcld |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> ( A - B ) e. RR ) |
| 35 |
34
|
rexrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> ( A - B ) e. RR* ) |
| 36 |
|
0red |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> 0 e. RR ) |
| 37 |
7
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> A e. CC ) |
| 38 |
37
|
subid1d |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> ( A - 0 ) = A ) |
| 39 |
|
simpr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> A < 0 ) |
| 40 |
1 9 21
|
mul2lt0llt0 |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> 0 < B ) |
| 41 |
32 36 33 39 40
|
lttrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> A < B ) |
| 42 |
38 41
|
eqbrtrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> ( A - 0 ) < B ) |
| 43 |
32 36 33 42
|
ltsub23d |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> ( A - B ) < 0 ) |
| 44 |
|
sgnn |
|- ( ( ( A - B ) e. RR* /\ ( A - B ) < 0 ) -> ( sgn ` ( A - B ) ) = -u 1 ) |
| 45 |
35 43 44
|
syl2anc |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> ( sgn ` ( A - B ) ) = -u 1 ) |
| 46 |
2 3 4 5 15 31 45
|
sgn3da |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) -> ( sgn ` ( A - B ) ) = ( sgn ` A ) ) |