| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpll |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) -> A e. RR ) | 
						
							| 2 | 1 | rexrd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) -> A e. RR* ) | 
						
							| 3 |  | eqeq2 |  |-  ( ( sgn ` A ) = 0 -> ( ( sgn ` ( A - B ) ) = ( sgn ` A ) <-> ( sgn ` ( A - B ) ) = 0 ) ) | 
						
							| 4 |  | eqeq2 |  |-  ( ( sgn ` A ) = 1 -> ( ( sgn ` ( A - B ) ) = ( sgn ` A ) <-> ( sgn ` ( A - B ) ) = 1 ) ) | 
						
							| 5 |  | eqeq2 |  |-  ( ( sgn ` A ) = -u 1 -> ( ( sgn ` ( A - B ) ) = ( sgn ` A ) <-> ( sgn ` ( A - B ) ) = -u 1 ) ) | 
						
							| 6 |  | simpr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A = 0 ) -> A = 0 ) | 
						
							| 7 | 1 | recnd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) -> A e. CC ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A = 0 ) -> A e. CC ) | 
						
							| 9 |  | simplr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) -> B e. RR ) | 
						
							| 10 | 9 | recnd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) -> B e. CC ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A = 0 ) -> B e. CC ) | 
						
							| 12 |  | simplr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A = 0 ) -> ( A x. B ) < 0 ) | 
						
							| 13 | 12 | lt0ne0d |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A = 0 ) -> ( A x. B ) =/= 0 ) | 
						
							| 14 | 8 11 13 | mulne0bad |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A = 0 ) -> A =/= 0 ) | 
						
							| 15 | 6 14 | pm2.21ddne |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A = 0 ) -> ( sgn ` ( A - B ) ) = 0 ) | 
						
							| 16 |  | simplll |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ 0 < A ) -> A e. RR ) | 
						
							| 17 |  | simpllr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ 0 < A ) -> B e. RR ) | 
						
							| 18 | 16 17 | resubcld |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ 0 < A ) -> ( A - B ) e. RR ) | 
						
							| 19 | 18 | rexrd |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ 0 < A ) -> ( A - B ) e. RR* ) | 
						
							| 20 |  | 0red |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ 0 < A ) -> 0 e. RR ) | 
						
							| 21 |  | simpr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) -> ( A x. B ) < 0 ) | 
						
							| 22 | 1 9 21 | mul2lt0lgt0 |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ 0 < A ) -> B < 0 ) | 
						
							| 23 |  | simpr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ 0 < A ) -> 0 < A ) | 
						
							| 24 | 17 20 16 22 23 | lttrd |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ 0 < A ) -> B < A ) | 
						
							| 25 |  | simpr |  |-  ( ( A e. RR /\ B e. RR ) -> B e. RR ) | 
						
							| 26 |  | simpl |  |-  ( ( A e. RR /\ B e. RR ) -> A e. RR ) | 
						
							| 27 | 25 26 | posdifd |  |-  ( ( A e. RR /\ B e. RR ) -> ( B < A <-> 0 < ( A - B ) ) ) | 
						
							| 28 | 27 | biimpa |  |-  ( ( ( A e. RR /\ B e. RR ) /\ B < A ) -> 0 < ( A - B ) ) | 
						
							| 29 | 16 17 24 28 | syl21anc |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ 0 < A ) -> 0 < ( A - B ) ) | 
						
							| 30 |  | sgnp |  |-  ( ( ( A - B ) e. RR* /\ 0 < ( A - B ) ) -> ( sgn ` ( A - B ) ) = 1 ) | 
						
							| 31 | 19 29 30 | syl2anc |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ 0 < A ) -> ( sgn ` ( A - B ) ) = 1 ) | 
						
							| 32 |  | simplll |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> A e. RR ) | 
						
							| 33 |  | simpllr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> B e. RR ) | 
						
							| 34 | 32 33 | resubcld |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> ( A - B ) e. RR ) | 
						
							| 35 | 34 | rexrd |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> ( A - B ) e. RR* ) | 
						
							| 36 |  | 0red |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> 0 e. RR ) | 
						
							| 37 | 7 | adantr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> A e. CC ) | 
						
							| 38 | 37 | subid1d |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> ( A - 0 ) = A ) | 
						
							| 39 |  | simpr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> A < 0 ) | 
						
							| 40 | 1 9 21 | mul2lt0llt0 |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> 0 < B ) | 
						
							| 41 | 32 36 33 39 40 | lttrd |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> A < B ) | 
						
							| 42 | 38 41 | eqbrtrd |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> ( A - 0 ) < B ) | 
						
							| 43 | 32 36 33 42 | ltsub23d |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> ( A - B ) < 0 ) | 
						
							| 44 |  | sgnn |  |-  ( ( ( A - B ) e. RR* /\ ( A - B ) < 0 ) -> ( sgn ` ( A - B ) ) = -u 1 ) | 
						
							| 45 | 35 43 44 | syl2anc |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) /\ A < 0 ) -> ( sgn ` ( A - B ) ) = -u 1 ) | 
						
							| 46 | 2 3 4 5 15 31 45 | sgn3da |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( A x. B ) < 0 ) -> ( sgn ` ( A - B ) ) = ( sgn ` A ) ) |