| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( A e. RR /\ B e. RR+ ) -> B e. RR+ ) | 
						
							| 2 | 1 | rpred |  |-  ( ( A e. RR /\ B e. RR+ ) -> B e. RR ) | 
						
							| 3 |  | sgnmul |  |-  ( ( A e. RR /\ B e. RR ) -> ( sgn ` ( A x. B ) ) = ( ( sgn ` A ) x. ( sgn ` B ) ) ) | 
						
							| 4 | 2 3 | syldan |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( sgn ` ( A x. B ) ) = ( ( sgn ` A ) x. ( sgn ` B ) ) ) | 
						
							| 5 | 1 | rpxrd |  |-  ( ( A e. RR /\ B e. RR+ ) -> B e. RR* ) | 
						
							| 6 | 1 | rpgt0d |  |-  ( ( A e. RR /\ B e. RR+ ) -> 0 < B ) | 
						
							| 7 |  | sgnp |  |-  ( ( B e. RR* /\ 0 < B ) -> ( sgn ` B ) = 1 ) | 
						
							| 8 | 5 6 7 | syl2anc |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( sgn ` B ) = 1 ) | 
						
							| 9 | 8 | oveq2d |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( sgn ` A ) x. ( sgn ` B ) ) = ( ( sgn ` A ) x. 1 ) ) | 
						
							| 10 |  | simpl |  |-  ( ( A e. RR /\ B e. RR+ ) -> A e. RR ) | 
						
							| 11 |  | sgnclre |  |-  ( A e. RR -> ( sgn ` A ) e. RR ) | 
						
							| 12 |  | ax-1rid |  |-  ( ( sgn ` A ) e. RR -> ( ( sgn ` A ) x. 1 ) = ( sgn ` A ) ) | 
						
							| 13 | 10 11 12 | 3syl |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( sgn ` A ) x. 1 ) = ( sgn ` A ) ) | 
						
							| 14 | 4 9 13 | 3eqtrd |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( sgn ` ( A x. B ) ) = ( sgn ` A ) ) |