| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( A e. RR /\ B e. RR+ ) -> B e. RR+ ) |
| 2 |
1
|
rpred |
|- ( ( A e. RR /\ B e. RR+ ) -> B e. RR ) |
| 3 |
|
sgnmul |
|- ( ( A e. RR /\ B e. RR ) -> ( sgn ` ( A x. B ) ) = ( ( sgn ` A ) x. ( sgn ` B ) ) ) |
| 4 |
2 3
|
syldan |
|- ( ( A e. RR /\ B e. RR+ ) -> ( sgn ` ( A x. B ) ) = ( ( sgn ` A ) x. ( sgn ` B ) ) ) |
| 5 |
1
|
rpxrd |
|- ( ( A e. RR /\ B e. RR+ ) -> B e. RR* ) |
| 6 |
1
|
rpgt0d |
|- ( ( A e. RR /\ B e. RR+ ) -> 0 < B ) |
| 7 |
|
sgnp |
|- ( ( B e. RR* /\ 0 < B ) -> ( sgn ` B ) = 1 ) |
| 8 |
5 6 7
|
syl2anc |
|- ( ( A e. RR /\ B e. RR+ ) -> ( sgn ` B ) = 1 ) |
| 9 |
8
|
oveq2d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( sgn ` A ) x. ( sgn ` B ) ) = ( ( sgn ` A ) x. 1 ) ) |
| 10 |
|
simpl |
|- ( ( A e. RR /\ B e. RR+ ) -> A e. RR ) |
| 11 |
|
sgnclre |
|- ( A e. RR -> ( sgn ` A ) e. RR ) |
| 12 |
|
ax-1rid |
|- ( ( sgn ` A ) e. RR -> ( ( sgn ` A ) x. 1 ) = ( sgn ` A ) ) |
| 13 |
10 11 12
|
3syl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( sgn ` A ) x. 1 ) = ( sgn ` A ) ) |
| 14 |
4 9 13
|
3eqtrd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( sgn ` ( A x. B ) ) = ( sgn ` A ) ) |