Metamath Proof Explorer


Theorem sgnclre

Description: Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018)

Ref Expression
Assertion sgnclre
|- ( A e. RR -> ( sgn ` A ) e. RR )

Proof

Step Hyp Ref Expression
1 neg1rr
 |-  -u 1 e. RR
2 0re
 |-  0 e. RR
3 1re
 |-  1 e. RR
4 tpssi
 |-  ( ( -u 1 e. RR /\ 0 e. RR /\ 1 e. RR ) -> { -u 1 , 0 , 1 } C_ RR )
5 1 2 3 4 mp3an
 |-  { -u 1 , 0 , 1 } C_ RR
6 rexr
 |-  ( A e. RR -> A e. RR* )
7 sgncl
 |-  ( A e. RR* -> ( sgn ` A ) e. { -u 1 , 0 , 1 } )
8 6 7 syl
 |-  ( A e. RR -> ( sgn ` A ) e. { -u 1 , 0 , 1 } )
9 5 8 sselid
 |-  ( A e. RR -> ( sgn ` A ) e. RR )