| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 2 | 1 | negeq0d |  |-  ( A e. RR -> ( A = 0 <-> -u A = 0 ) ) | 
						
							| 3 | 2 | bicomd |  |-  ( A e. RR -> ( -u A = 0 <-> A = 0 ) ) | 
						
							| 4 |  | eqidd |  |-  ( ( A e. RR /\ -u A = 0 ) -> 0 = 0 ) | 
						
							| 5 | 3 | necon3bbid |  |-  ( A e. RR -> ( -. -u A = 0 <-> A =/= 0 ) ) | 
						
							| 6 | 5 | biimpa |  |-  ( ( A e. RR /\ -. -u A = 0 ) -> A =/= 0 ) | 
						
							| 7 |  | lt0neg2 |  |-  ( A e. RR -> ( 0 < A <-> -u A < 0 ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( A e. RR /\ A =/= 0 ) -> ( 0 < A <-> -u A < 0 ) ) | 
						
							| 9 |  | id |  |-  ( A e. RR -> A e. RR ) | 
						
							| 10 |  | 0red |  |-  ( A e. RR -> 0 e. RR ) | 
						
							| 11 | 9 10 | lttri2d |  |-  ( A e. RR -> ( A =/= 0 <-> ( A < 0 \/ 0 < A ) ) ) | 
						
							| 12 | 11 | biimpa |  |-  ( ( A e. RR /\ A =/= 0 ) -> ( A < 0 \/ 0 < A ) ) | 
						
							| 13 |  | ltnsym2 |  |-  ( ( A e. RR /\ 0 e. RR ) -> -. ( A < 0 /\ 0 < A ) ) | 
						
							| 14 | 10 13 | mpdan |  |-  ( A e. RR -> -. ( A < 0 /\ 0 < A ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( A e. RR /\ A =/= 0 ) -> -. ( A < 0 /\ 0 < A ) ) | 
						
							| 16 | 12 15 | jca |  |-  ( ( A e. RR /\ A =/= 0 ) -> ( ( A < 0 \/ 0 < A ) /\ -. ( A < 0 /\ 0 < A ) ) ) | 
						
							| 17 |  | pm5.17 |  |-  ( ( ( A < 0 \/ 0 < A ) /\ -. ( A < 0 /\ 0 < A ) ) <-> ( A < 0 <-> -. 0 < A ) ) | 
						
							| 18 | 16 17 | sylib |  |-  ( ( A e. RR /\ A =/= 0 ) -> ( A < 0 <-> -. 0 < A ) ) | 
						
							| 19 | 18 | con2bid |  |-  ( ( A e. RR /\ A =/= 0 ) -> ( 0 < A <-> -. A < 0 ) ) | 
						
							| 20 | 8 19 | bitr3d |  |-  ( ( A e. RR /\ A =/= 0 ) -> ( -u A < 0 <-> -. A < 0 ) ) | 
						
							| 21 | 20 | ifbid |  |-  ( ( A e. RR /\ A =/= 0 ) -> if ( -u A < 0 , -u 1 , 1 ) = if ( -. A < 0 , -u 1 , 1 ) ) | 
						
							| 22 |  | ifnot |  |-  if ( -. A < 0 , -u 1 , 1 ) = if ( A < 0 , 1 , -u 1 ) | 
						
							| 23 | 21 22 | eqtrdi |  |-  ( ( A e. RR /\ A =/= 0 ) -> if ( -u A < 0 , -u 1 , 1 ) = if ( A < 0 , 1 , -u 1 ) ) | 
						
							| 24 | 6 23 | syldan |  |-  ( ( A e. RR /\ -. -u A = 0 ) -> if ( -u A < 0 , -u 1 , 1 ) = if ( A < 0 , 1 , -u 1 ) ) | 
						
							| 25 | 3 4 24 | ifbieq12d2 |  |-  ( A e. RR -> if ( -u A = 0 , 0 , if ( -u A < 0 , -u 1 , 1 ) ) = if ( A = 0 , 0 , if ( A < 0 , 1 , -u 1 ) ) ) | 
						
							| 26 |  | renegcl |  |-  ( A e. RR -> -u A e. RR ) | 
						
							| 27 |  | rexr |  |-  ( -u A e. RR -> -u A e. RR* ) | 
						
							| 28 |  | sgnval |  |-  ( -u A e. RR* -> ( sgn ` -u A ) = if ( -u A = 0 , 0 , if ( -u A < 0 , -u 1 , 1 ) ) ) | 
						
							| 29 | 26 27 28 | 3syl |  |-  ( A e. RR -> ( sgn ` -u A ) = if ( -u A = 0 , 0 , if ( -u A < 0 , -u 1 , 1 ) ) ) | 
						
							| 30 |  | df-neg |  |-  -u ( sgn ` A ) = ( 0 - ( sgn ` A ) ) | 
						
							| 31 | 30 | a1i |  |-  ( A e. RR -> -u ( sgn ` A ) = ( 0 - ( sgn ` A ) ) ) | 
						
							| 32 |  | rexr |  |-  ( A e. RR -> A e. RR* ) | 
						
							| 33 |  | sgnval |  |-  ( A e. RR* -> ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) | 
						
							| 34 | 32 33 | syl |  |-  ( A e. RR -> ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) | 
						
							| 35 | 34 | oveq2d |  |-  ( A e. RR -> ( 0 - ( sgn ` A ) ) = ( 0 - if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) ) | 
						
							| 36 |  | ovif2 |  |-  ( 0 - if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) = if ( A = 0 , ( 0 - 0 ) , ( 0 - if ( A < 0 , -u 1 , 1 ) ) ) | 
						
							| 37 |  | biid |  |-  ( A = 0 <-> A = 0 ) | 
						
							| 38 |  | 0m0e0 |  |-  ( 0 - 0 ) = 0 | 
						
							| 39 |  | ovif2 |  |-  ( 0 - if ( A < 0 , -u 1 , 1 ) ) = if ( A < 0 , ( 0 - -u 1 ) , ( 0 - 1 ) ) | 
						
							| 40 |  | biid |  |-  ( A < 0 <-> A < 0 ) | 
						
							| 41 |  | 0cn |  |-  0 e. CC | 
						
							| 42 |  | ax-1cn |  |-  1 e. CC | 
						
							| 43 | 41 42 | subnegi |  |-  ( 0 - -u 1 ) = ( 0 + 1 ) | 
						
							| 44 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 45 | 43 44 | eqtr2i |  |-  1 = ( 0 - -u 1 ) | 
						
							| 46 |  | df-neg |  |-  -u 1 = ( 0 - 1 ) | 
						
							| 47 | 40 45 46 | ifbieq12i |  |-  if ( A < 0 , 1 , -u 1 ) = if ( A < 0 , ( 0 - -u 1 ) , ( 0 - 1 ) ) | 
						
							| 48 | 39 47 | eqtr4i |  |-  ( 0 - if ( A < 0 , -u 1 , 1 ) ) = if ( A < 0 , 1 , -u 1 ) | 
						
							| 49 | 37 38 48 | ifbieq12i |  |-  if ( A = 0 , ( 0 - 0 ) , ( 0 - if ( A < 0 , -u 1 , 1 ) ) ) = if ( A = 0 , 0 , if ( A < 0 , 1 , -u 1 ) ) | 
						
							| 50 | 36 49 | eqtri |  |-  ( 0 - if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) = if ( A = 0 , 0 , if ( A < 0 , 1 , -u 1 ) ) | 
						
							| 51 | 50 | a1i |  |-  ( A e. RR -> ( 0 - if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) = if ( A = 0 , 0 , if ( A < 0 , 1 , -u 1 ) ) ) | 
						
							| 52 | 31 35 51 | 3eqtrd |  |-  ( A e. RR -> -u ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , 1 , -u 1 ) ) ) | 
						
							| 53 | 25 29 52 | 3eqtr4d |  |-  ( A e. RR -> ( sgn ` -u A ) = -u ( sgn ` A ) ) |