Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
2 |
1
|
negeq0d |
|- ( A e. RR -> ( A = 0 <-> -u A = 0 ) ) |
3 |
2
|
bicomd |
|- ( A e. RR -> ( -u A = 0 <-> A = 0 ) ) |
4 |
|
eqidd |
|- ( ( A e. RR /\ -u A = 0 ) -> 0 = 0 ) |
5 |
3
|
necon3bbid |
|- ( A e. RR -> ( -. -u A = 0 <-> A =/= 0 ) ) |
6 |
5
|
biimpa |
|- ( ( A e. RR /\ -. -u A = 0 ) -> A =/= 0 ) |
7 |
|
lt0neg2 |
|- ( A e. RR -> ( 0 < A <-> -u A < 0 ) ) |
8 |
7
|
adantr |
|- ( ( A e. RR /\ A =/= 0 ) -> ( 0 < A <-> -u A < 0 ) ) |
9 |
|
id |
|- ( A e. RR -> A e. RR ) |
10 |
|
0red |
|- ( A e. RR -> 0 e. RR ) |
11 |
9 10
|
lttri2d |
|- ( A e. RR -> ( A =/= 0 <-> ( A < 0 \/ 0 < A ) ) ) |
12 |
11
|
biimpa |
|- ( ( A e. RR /\ A =/= 0 ) -> ( A < 0 \/ 0 < A ) ) |
13 |
|
ltnsym2 |
|- ( ( A e. RR /\ 0 e. RR ) -> -. ( A < 0 /\ 0 < A ) ) |
14 |
10 13
|
mpdan |
|- ( A e. RR -> -. ( A < 0 /\ 0 < A ) ) |
15 |
14
|
adantr |
|- ( ( A e. RR /\ A =/= 0 ) -> -. ( A < 0 /\ 0 < A ) ) |
16 |
12 15
|
jca |
|- ( ( A e. RR /\ A =/= 0 ) -> ( ( A < 0 \/ 0 < A ) /\ -. ( A < 0 /\ 0 < A ) ) ) |
17 |
|
pm5.17 |
|- ( ( ( A < 0 \/ 0 < A ) /\ -. ( A < 0 /\ 0 < A ) ) <-> ( A < 0 <-> -. 0 < A ) ) |
18 |
16 17
|
sylib |
|- ( ( A e. RR /\ A =/= 0 ) -> ( A < 0 <-> -. 0 < A ) ) |
19 |
18
|
con2bid |
|- ( ( A e. RR /\ A =/= 0 ) -> ( 0 < A <-> -. A < 0 ) ) |
20 |
8 19
|
bitr3d |
|- ( ( A e. RR /\ A =/= 0 ) -> ( -u A < 0 <-> -. A < 0 ) ) |
21 |
20
|
ifbid |
|- ( ( A e. RR /\ A =/= 0 ) -> if ( -u A < 0 , -u 1 , 1 ) = if ( -. A < 0 , -u 1 , 1 ) ) |
22 |
|
ifnot |
|- if ( -. A < 0 , -u 1 , 1 ) = if ( A < 0 , 1 , -u 1 ) |
23 |
21 22
|
eqtrdi |
|- ( ( A e. RR /\ A =/= 0 ) -> if ( -u A < 0 , -u 1 , 1 ) = if ( A < 0 , 1 , -u 1 ) ) |
24 |
6 23
|
syldan |
|- ( ( A e. RR /\ -. -u A = 0 ) -> if ( -u A < 0 , -u 1 , 1 ) = if ( A < 0 , 1 , -u 1 ) ) |
25 |
3 4 24
|
ifbieq12d2 |
|- ( A e. RR -> if ( -u A = 0 , 0 , if ( -u A < 0 , -u 1 , 1 ) ) = if ( A = 0 , 0 , if ( A < 0 , 1 , -u 1 ) ) ) |
26 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
27 |
|
rexr |
|- ( -u A e. RR -> -u A e. RR* ) |
28 |
|
sgnval |
|- ( -u A e. RR* -> ( sgn ` -u A ) = if ( -u A = 0 , 0 , if ( -u A < 0 , -u 1 , 1 ) ) ) |
29 |
26 27 28
|
3syl |
|- ( A e. RR -> ( sgn ` -u A ) = if ( -u A = 0 , 0 , if ( -u A < 0 , -u 1 , 1 ) ) ) |
30 |
|
df-neg |
|- -u ( sgn ` A ) = ( 0 - ( sgn ` A ) ) |
31 |
30
|
a1i |
|- ( A e. RR -> -u ( sgn ` A ) = ( 0 - ( sgn ` A ) ) ) |
32 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
33 |
|
sgnval |
|- ( A e. RR* -> ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) |
34 |
32 33
|
syl |
|- ( A e. RR -> ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) |
35 |
34
|
oveq2d |
|- ( A e. RR -> ( 0 - ( sgn ` A ) ) = ( 0 - if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) ) |
36 |
|
ovif2 |
|- ( 0 - if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) = if ( A = 0 , ( 0 - 0 ) , ( 0 - if ( A < 0 , -u 1 , 1 ) ) ) |
37 |
|
biid |
|- ( A = 0 <-> A = 0 ) |
38 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
39 |
|
ovif2 |
|- ( 0 - if ( A < 0 , -u 1 , 1 ) ) = if ( A < 0 , ( 0 - -u 1 ) , ( 0 - 1 ) ) |
40 |
|
biid |
|- ( A < 0 <-> A < 0 ) |
41 |
|
0cn |
|- 0 e. CC |
42 |
|
ax-1cn |
|- 1 e. CC |
43 |
41 42
|
subnegi |
|- ( 0 - -u 1 ) = ( 0 + 1 ) |
44 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
45 |
43 44
|
eqtr2i |
|- 1 = ( 0 - -u 1 ) |
46 |
|
df-neg |
|- -u 1 = ( 0 - 1 ) |
47 |
40 45 46
|
ifbieq12i |
|- if ( A < 0 , 1 , -u 1 ) = if ( A < 0 , ( 0 - -u 1 ) , ( 0 - 1 ) ) |
48 |
39 47
|
eqtr4i |
|- ( 0 - if ( A < 0 , -u 1 , 1 ) ) = if ( A < 0 , 1 , -u 1 ) |
49 |
37 38 48
|
ifbieq12i |
|- if ( A = 0 , ( 0 - 0 ) , ( 0 - if ( A < 0 , -u 1 , 1 ) ) ) = if ( A = 0 , 0 , if ( A < 0 , 1 , -u 1 ) ) |
50 |
36 49
|
eqtri |
|- ( 0 - if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) = if ( A = 0 , 0 , if ( A < 0 , 1 , -u 1 ) ) |
51 |
50
|
a1i |
|- ( A e. RR -> ( 0 - if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) = if ( A = 0 , 0 , if ( A < 0 , 1 , -u 1 ) ) ) |
52 |
31 35 51
|
3eqtrd |
|- ( A e. RR -> -u ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , 1 , -u 1 ) ) ) |
53 |
25 29 52
|
3eqtr4d |
|- ( A e. RR -> ( sgn ` -u A ) = -u ( sgn ` A ) ) |