Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|
2 |
1
|
negeq0d |
|
3 |
2
|
bicomd |
|
4 |
|
eqidd |
|
5 |
3
|
necon3bbid |
|
6 |
5
|
biimpa |
|
7 |
|
lt0neg2 |
|
8 |
7
|
adantr |
|
9 |
|
id |
|
10 |
|
0red |
|
11 |
9 10
|
lttri2d |
|
12 |
11
|
biimpa |
|
13 |
|
ltnsym2 |
|
14 |
10 13
|
mpdan |
|
15 |
14
|
adantr |
|
16 |
12 15
|
jca |
|
17 |
|
pm5.17 |
|
18 |
16 17
|
sylib |
|
19 |
18
|
con2bid |
|
20 |
8 19
|
bitr3d |
|
21 |
20
|
ifbid |
|
22 |
|
ifnot |
|
23 |
21 22
|
eqtrdi |
|
24 |
6 23
|
syldan |
|
25 |
3 4 24
|
ifbieq12d2 |
|
26 |
|
renegcl |
|
27 |
|
rexr |
|
28 |
|
sgnval |
|
29 |
26 27 28
|
3syl |
|
30 |
|
df-neg |
|
31 |
30
|
a1i |
|
32 |
|
rexr |
|
33 |
|
sgnval |
|
34 |
32 33
|
syl |
|
35 |
34
|
oveq2d |
|
36 |
|
ovif2 |
|
37 |
|
biid |
|
38 |
|
0m0e0 |
|
39 |
|
ovif2 |
|
40 |
|
biid |
|
41 |
|
0cn |
|
42 |
|
ax-1cn |
|
43 |
41 42
|
subnegi |
|
44 |
|
0p1e1 |
|
45 |
43 44
|
eqtr2i |
|
46 |
|
df-neg |
|
47 |
40 45 46
|
ifbieq12i |
|
48 |
39 47
|
eqtr4i |
|
49 |
37 38 48
|
ifbieq12i |
|
50 |
36 49
|
eqtri |
|
51 |
50
|
a1i |
|
52 |
31 35 51
|
3eqtrd |
|
53 |
25 29 52
|
3eqtr4d |
|