| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recn |
|
| 2 |
1
|
negeq0d |
|
| 3 |
2
|
bicomd |
|
| 4 |
|
eqidd |
|
| 5 |
3
|
necon3bbid |
|
| 6 |
5
|
biimpa |
|
| 7 |
|
lt0neg2 |
|
| 8 |
7
|
adantr |
|
| 9 |
|
id |
|
| 10 |
|
0red |
|
| 11 |
9 10
|
lttri2d |
|
| 12 |
11
|
biimpa |
|
| 13 |
|
ltnsym2 |
|
| 14 |
10 13
|
mpdan |
|
| 15 |
14
|
adantr |
|
| 16 |
12 15
|
jca |
|
| 17 |
|
pm5.17 |
|
| 18 |
16 17
|
sylib |
|
| 19 |
18
|
con2bid |
|
| 20 |
8 19
|
bitr3d |
|
| 21 |
20
|
ifbid |
|
| 22 |
|
ifnot |
|
| 23 |
21 22
|
eqtrdi |
|
| 24 |
6 23
|
syldan |
|
| 25 |
3 4 24
|
ifbieq12d2 |
|
| 26 |
|
renegcl |
|
| 27 |
|
rexr |
|
| 28 |
|
sgnval |
|
| 29 |
26 27 28
|
3syl |
|
| 30 |
|
df-neg |
|
| 31 |
30
|
a1i |
|
| 32 |
|
rexr |
|
| 33 |
|
sgnval |
|
| 34 |
32 33
|
syl |
|
| 35 |
34
|
oveq2d |
|
| 36 |
|
ovif2 |
|
| 37 |
|
biid |
|
| 38 |
|
0m0e0 |
|
| 39 |
|
ovif2 |
|
| 40 |
|
biid |
|
| 41 |
|
0cn |
|
| 42 |
|
ax-1cn |
|
| 43 |
41 42
|
subnegi |
|
| 44 |
|
0p1e1 |
|
| 45 |
43 44
|
eqtr2i |
|
| 46 |
|
df-neg |
|
| 47 |
40 45 46
|
ifbieq12i |
|
| 48 |
39 47
|
eqtr4i |
|
| 49 |
37 38 48
|
ifbieq12i |
|
| 50 |
36 49
|
eqtri |
|
| 51 |
50
|
a1i |
|
| 52 |
31 35 51
|
3eqtrd |
|
| 53 |
25 29 52
|
3eqtr4d |
|