Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
2 |
|
signsv.w |
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
3 |
|
signsv.t |
|- T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) |
4 |
|
signsv.v |
|- V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) |
5 |
1 2
|
signswbase |
|- { -u 1 , 0 , 1 } = ( Base ` W ) |
6 |
1 2
|
signswmnd |
|- W e. Mnd |
7 |
6
|
a1i |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> W e. Mnd ) |
8 |
|
eldifi |
|- ( F e. ( Word RR \ { (/) } ) -> F e. Word RR ) |
9 |
|
lencl |
|- ( F e. Word RR -> ( # ` F ) e. NN0 ) |
10 |
8 9
|
syl |
|- ( F e. ( Word RR \ { (/) } ) -> ( # ` F ) e. NN0 ) |
11 |
|
eldifsn |
|- ( F e. ( Word RR \ { (/) } ) <-> ( F e. Word RR /\ F =/= (/) ) ) |
12 |
|
hasheq0 |
|- ( F e. Word RR -> ( ( # ` F ) = 0 <-> F = (/) ) ) |
13 |
12
|
necon3bid |
|- ( F e. Word RR -> ( ( # ` F ) =/= 0 <-> F =/= (/) ) ) |
14 |
13
|
biimpar |
|- ( ( F e. Word RR /\ F =/= (/) ) -> ( # ` F ) =/= 0 ) |
15 |
11 14
|
sylbi |
|- ( F e. ( Word RR \ { (/) } ) -> ( # ` F ) =/= 0 ) |
16 |
|
elnnne0 |
|- ( ( # ` F ) e. NN <-> ( ( # ` F ) e. NN0 /\ ( # ` F ) =/= 0 ) ) |
17 |
10 15 16
|
sylanbrc |
|- ( F e. ( Word RR \ { (/) } ) -> ( # ` F ) e. NN ) |
18 |
17
|
adantr |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( # ` F ) e. NN ) |
19 |
|
nnm1nn0 |
|- ( ( # ` F ) e. NN -> ( ( # ` F ) - 1 ) e. NN0 ) |
20 |
18 19
|
syl |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( ( # ` F ) - 1 ) e. NN0 ) |
21 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
22 |
20 21
|
eleqtrdi |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( ( # ` F ) - 1 ) e. ( ZZ>= ` 0 ) ) |
23 |
|
ccatws1cl |
|- ( ( F e. Word RR /\ K e. RR ) -> ( F ++ <" K "> ) e. Word RR ) |
24 |
23
|
adantr |
|- ( ( ( F e. Word RR /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> ( F ++ <" K "> ) e. Word RR ) |
25 |
|
wrdf |
|- ( ( F ++ <" K "> ) e. Word RR -> ( F ++ <" K "> ) : ( 0 ..^ ( # ` ( F ++ <" K "> ) ) ) --> RR ) |
26 |
24 25
|
syl |
|- ( ( ( F e. Word RR /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> ( F ++ <" K "> ) : ( 0 ..^ ( # ` ( F ++ <" K "> ) ) ) --> RR ) |
27 |
9
|
nn0zd |
|- ( F e. Word RR -> ( # ` F ) e. ZZ ) |
28 |
|
fzoval |
|- ( ( # ` F ) e. ZZ -> ( 0 ..^ ( # ` F ) ) = ( 0 ... ( ( # ` F ) - 1 ) ) ) |
29 |
27 28
|
syl |
|- ( F e. Word RR -> ( 0 ..^ ( # ` F ) ) = ( 0 ... ( ( # ` F ) - 1 ) ) ) |
30 |
29
|
adantr |
|- ( ( F e. Word RR /\ K e. RR ) -> ( 0 ..^ ( # ` F ) ) = ( 0 ... ( ( # ` F ) - 1 ) ) ) |
31 |
|
fzossfz |
|- ( 0 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
32 |
30 31
|
eqsstrrdi |
|- ( ( F e. Word RR /\ K e. RR ) -> ( 0 ... ( ( # ` F ) - 1 ) ) C_ ( 0 ... ( # ` F ) ) ) |
33 |
|
s1cl |
|- ( K e. RR -> <" K "> e. Word RR ) |
34 |
|
ccatlen |
|- ( ( F e. Word RR /\ <" K "> e. Word RR ) -> ( # ` ( F ++ <" K "> ) ) = ( ( # ` F ) + ( # ` <" K "> ) ) ) |
35 |
33 34
|
sylan2 |
|- ( ( F e. Word RR /\ K e. RR ) -> ( # ` ( F ++ <" K "> ) ) = ( ( # ` F ) + ( # ` <" K "> ) ) ) |
36 |
|
s1len |
|- ( # ` <" K "> ) = 1 |
37 |
36
|
oveq2i |
|- ( ( # ` F ) + ( # ` <" K "> ) ) = ( ( # ` F ) + 1 ) |
38 |
35 37
|
eqtrdi |
|- ( ( F e. Word RR /\ K e. RR ) -> ( # ` ( F ++ <" K "> ) ) = ( ( # ` F ) + 1 ) ) |
39 |
38
|
oveq2d |
|- ( ( F e. Word RR /\ K e. RR ) -> ( 0 ..^ ( # ` ( F ++ <" K "> ) ) ) = ( 0 ..^ ( ( # ` F ) + 1 ) ) ) |
40 |
27
|
adantr |
|- ( ( F e. Word RR /\ K e. RR ) -> ( # ` F ) e. ZZ ) |
41 |
40
|
peano2zd |
|- ( ( F e. Word RR /\ K e. RR ) -> ( ( # ` F ) + 1 ) e. ZZ ) |
42 |
|
fzoval |
|- ( ( ( # ` F ) + 1 ) e. ZZ -> ( 0 ..^ ( ( # ` F ) + 1 ) ) = ( 0 ... ( ( ( # ` F ) + 1 ) - 1 ) ) ) |
43 |
41 42
|
syl |
|- ( ( F e. Word RR /\ K e. RR ) -> ( 0 ..^ ( ( # ` F ) + 1 ) ) = ( 0 ... ( ( ( # ` F ) + 1 ) - 1 ) ) ) |
44 |
9
|
nn0cnd |
|- ( F e. Word RR -> ( # ` F ) e. CC ) |
45 |
|
1cnd |
|- ( F e. Word RR -> 1 e. CC ) |
46 |
44 45
|
pncand |
|- ( F e. Word RR -> ( ( ( # ` F ) + 1 ) - 1 ) = ( # ` F ) ) |
47 |
46
|
adantr |
|- ( ( F e. Word RR /\ K e. RR ) -> ( ( ( # ` F ) + 1 ) - 1 ) = ( # ` F ) ) |
48 |
47
|
oveq2d |
|- ( ( F e. Word RR /\ K e. RR ) -> ( 0 ... ( ( ( # ` F ) + 1 ) - 1 ) ) = ( 0 ... ( # ` F ) ) ) |
49 |
39 43 48
|
3eqtrd |
|- ( ( F e. Word RR /\ K e. RR ) -> ( 0 ..^ ( # ` ( F ++ <" K "> ) ) ) = ( 0 ... ( # ` F ) ) ) |
50 |
32 49
|
sseqtrrd |
|- ( ( F e. Word RR /\ K e. RR ) -> ( 0 ... ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` ( F ++ <" K "> ) ) ) ) |
51 |
50
|
sselda |
|- ( ( ( F e. Word RR /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> i e. ( 0 ..^ ( # ` ( F ++ <" K "> ) ) ) ) |
52 |
26 51
|
ffvelrnd |
|- ( ( ( F e. Word RR /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> ( ( F ++ <" K "> ) ` i ) e. RR ) |
53 |
8 52
|
sylanl1 |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> ( ( F ++ <" K "> ) ` i ) e. RR ) |
54 |
53
|
rexrd |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> ( ( F ++ <" K "> ) ` i ) e. RR* ) |
55 |
|
sgncl |
|- ( ( ( F ++ <" K "> ) ` i ) e. RR* -> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) e. { -u 1 , 0 , 1 } ) |
56 |
54 55
|
syl |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) e. { -u 1 , 0 , 1 } ) |
57 |
1 2
|
signswplusg |
|- .+^ = ( +g ` W ) |
58 |
|
rexr |
|- ( K e. RR -> K e. RR* ) |
59 |
|
sgncl |
|- ( K e. RR* -> ( sgn ` K ) e. { -u 1 , 0 , 1 } ) |
60 |
58 59
|
syl |
|- ( K e. RR -> ( sgn ` K ) e. { -u 1 , 0 , 1 } ) |
61 |
60
|
adantl |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( sgn ` K ) e. { -u 1 , 0 , 1 } ) |
62 |
|
id |
|- ( i = ( ( ( # ` F ) - 1 ) + 1 ) -> i = ( ( ( # ` F ) - 1 ) + 1 ) ) |
63 |
44 45
|
npcand |
|- ( F e. Word RR -> ( ( ( # ` F ) - 1 ) + 1 ) = ( # ` F ) ) |
64 |
63
|
adantr |
|- ( ( F e. Word RR /\ K e. RR ) -> ( ( ( # ` F ) - 1 ) + 1 ) = ( # ` F ) ) |
65 |
62 64
|
sylan9eqr |
|- ( ( ( F e. Word RR /\ K e. RR ) /\ i = ( ( ( # ` F ) - 1 ) + 1 ) ) -> i = ( # ` F ) ) |
66 |
65
|
fveq2d |
|- ( ( ( F e. Word RR /\ K e. RR ) /\ i = ( ( ( # ` F ) - 1 ) + 1 ) ) -> ( ( F ++ <" K "> ) ` i ) = ( ( F ++ <" K "> ) ` ( # ` F ) ) ) |
67 |
|
ccatws1ls |
|- ( ( F e. Word RR /\ K e. RR ) -> ( ( F ++ <" K "> ) ` ( # ` F ) ) = K ) |
68 |
67
|
adantr |
|- ( ( ( F e. Word RR /\ K e. RR ) /\ i = ( ( ( # ` F ) - 1 ) + 1 ) ) -> ( ( F ++ <" K "> ) ` ( # ` F ) ) = K ) |
69 |
66 68
|
eqtrd |
|- ( ( ( F e. Word RR /\ K e. RR ) /\ i = ( ( ( # ` F ) - 1 ) + 1 ) ) -> ( ( F ++ <" K "> ) ` i ) = K ) |
70 |
8 69
|
sylanl1 |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ i = ( ( ( # ` F ) - 1 ) + 1 ) ) -> ( ( F ++ <" K "> ) ` i ) = K ) |
71 |
70
|
fveq2d |
|- ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ i = ( ( ( # ` F ) - 1 ) + 1 ) ) -> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) = ( sgn ` K ) ) |
72 |
5 7 22 56 57 61 71
|
gsumnunsn |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( W gsum ( i e. ( 0 ... ( ( ( # ` F ) - 1 ) + 1 ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) = ( ( W gsum ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) .+^ ( sgn ` K ) ) ) |
73 |
8 63
|
syl |
|- ( F e. ( Word RR \ { (/) } ) -> ( ( ( # ` F ) - 1 ) + 1 ) = ( # ` F ) ) |
74 |
73
|
adantr |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( ( ( # ` F ) - 1 ) + 1 ) = ( # ` F ) ) |
75 |
74
|
oveq2d |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( 0 ... ( ( ( # ` F ) - 1 ) + 1 ) ) = ( 0 ... ( # ` F ) ) ) |
76 |
75
|
mpteq1d |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( i e. ( 0 ... ( ( ( # ` F ) - 1 ) + 1 ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) = ( i e. ( 0 ... ( # ` F ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) |
77 |
76
|
oveq2d |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( W gsum ( i e. ( 0 ... ( ( ( # ` F ) - 1 ) + 1 ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) = ( W gsum ( i e. ( 0 ... ( # ` F ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) ) |
78 |
|
simpll |
|- ( ( ( F e. Word RR /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> F e. Word RR ) |
79 |
33
|
ad2antlr |
|- ( ( ( F e. Word RR /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> <" K "> e. Word RR ) |
80 |
30
|
eleq2d |
|- ( ( F e. Word RR /\ K e. RR ) -> ( i e. ( 0 ..^ ( # ` F ) ) <-> i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) ) |
81 |
80
|
biimpar |
|- ( ( ( F e. Word RR /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> i e. ( 0 ..^ ( # ` F ) ) ) |
82 |
|
ccatval1 |
|- ( ( F e. Word RR /\ <" K "> e. Word RR /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F ++ <" K "> ) ` i ) = ( F ` i ) ) |
83 |
78 79 81 82
|
syl3anc |
|- ( ( ( F e. Word RR /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> ( ( F ++ <" K "> ) ` i ) = ( F ` i ) ) |
84 |
83
|
fveq2d |
|- ( ( ( F e. Word RR /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) = ( sgn ` ( F ` i ) ) ) |
85 |
84
|
mpteq2dva |
|- ( ( F e. Word RR /\ K e. RR ) -> ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) = ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( F ` i ) ) ) ) |
86 |
8 85
|
sylan |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) = ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( F ` i ) ) ) ) |
87 |
86
|
oveq2d |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( W gsum ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) = ( W gsum ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( F ` i ) ) ) ) ) |
88 |
87
|
oveq1d |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( ( W gsum ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) .+^ ( sgn ` K ) ) = ( ( W gsum ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( F ` i ) ) ) ) .+^ ( sgn ` K ) ) ) |
89 |
72 77 88
|
3eqtr3d |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( W gsum ( i e. ( 0 ... ( # ` F ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) = ( ( W gsum ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( F ` i ) ) ) ) .+^ ( sgn ` K ) ) ) |
90 |
|
eqid |
|- ( # ` F ) = ( # ` F ) |
91 |
90
|
olci |
|- ( ( # ` F ) e. ( 0 ..^ ( # ` F ) ) \/ ( # ` F ) = ( # ` F ) ) |
92 |
9 21
|
eleqtrdi |
|- ( F e. Word RR -> ( # ` F ) e. ( ZZ>= ` 0 ) ) |
93 |
|
fzosplitsni |
|- ( ( # ` F ) e. ( ZZ>= ` 0 ) -> ( ( # ` F ) e. ( 0 ..^ ( ( # ` F ) + 1 ) ) <-> ( ( # ` F ) e. ( 0 ..^ ( # ` F ) ) \/ ( # ` F ) = ( # ` F ) ) ) ) |
94 |
92 93
|
syl |
|- ( F e. Word RR -> ( ( # ` F ) e. ( 0 ..^ ( ( # ` F ) + 1 ) ) <-> ( ( # ` F ) e. ( 0 ..^ ( # ` F ) ) \/ ( # ` F ) = ( # ` F ) ) ) ) |
95 |
91 94
|
mpbiri |
|- ( F e. Word RR -> ( # ` F ) e. ( 0 ..^ ( ( # ` F ) + 1 ) ) ) |
96 |
95
|
adantr |
|- ( ( F e. Word RR /\ K e. RR ) -> ( # ` F ) e. ( 0 ..^ ( ( # ` F ) + 1 ) ) ) |
97 |
96 39
|
eleqtrrd |
|- ( ( F e. Word RR /\ K e. RR ) -> ( # ` F ) e. ( 0 ..^ ( # ` ( F ++ <" K "> ) ) ) ) |
98 |
1 2 3 4
|
signstfval |
|- ( ( ( F ++ <" K "> ) e. Word RR /\ ( # ` F ) e. ( 0 ..^ ( # ` ( F ++ <" K "> ) ) ) ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) = ( W gsum ( i e. ( 0 ... ( # ` F ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) ) |
99 |
23 97 98
|
syl2anc |
|- ( ( F e. Word RR /\ K e. RR ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) = ( W gsum ( i e. ( 0 ... ( # ` F ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) ) |
100 |
8 99
|
sylan |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) = ( W gsum ( i e. ( 0 ... ( # ` F ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) ) |
101 |
|
fzo0end |
|- ( ( # ` F ) e. NN -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
102 |
17 101
|
syl |
|- ( F e. ( Word RR \ { (/) } ) -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
103 |
1 2 3 4
|
signstfval |
|- ( ( F e. Word RR /\ ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) = ( W gsum ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( F ` i ) ) ) ) ) |
104 |
8 102 103
|
syl2anc |
|- ( F e. ( Word RR \ { (/) } ) -> ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) = ( W gsum ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( F ` i ) ) ) ) ) |
105 |
104
|
adantr |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) = ( W gsum ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( F ` i ) ) ) ) ) |
106 |
105
|
oveq1d |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) .+^ ( sgn ` K ) ) = ( ( W gsum ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( F ` i ) ) ) ) .+^ ( sgn ` K ) ) ) |
107 |
89 100 106
|
3eqtr4d |
|- ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) = ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) .+^ ( sgn ` K ) ) ) |