| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p |  |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) | 
						
							| 2 |  | signsv.w |  |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } | 
						
							| 3 |  | signsv.t |  |-  T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v |  |-  V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 5 | 1 2 | signswbase |  |-  { -u 1 , 0 , 1 } = ( Base ` W ) | 
						
							| 6 | 1 2 | signswmnd |  |-  W e. Mnd | 
						
							| 7 | 6 | a1i |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> W e. Mnd ) | 
						
							| 8 |  | eldifi |  |-  ( F e. ( Word RR \ { (/) } ) -> F e. Word RR ) | 
						
							| 9 |  | lencl |  |-  ( F e. Word RR -> ( # ` F ) e. NN0 ) | 
						
							| 10 | 8 9 | syl |  |-  ( F e. ( Word RR \ { (/) } ) -> ( # ` F ) e. NN0 ) | 
						
							| 11 |  | eldifsn |  |-  ( F e. ( Word RR \ { (/) } ) <-> ( F e. Word RR /\ F =/= (/) ) ) | 
						
							| 12 |  | hasheq0 |  |-  ( F e. Word RR -> ( ( # ` F ) = 0 <-> F = (/) ) ) | 
						
							| 13 | 12 | necon3bid |  |-  ( F e. Word RR -> ( ( # ` F ) =/= 0 <-> F =/= (/) ) ) | 
						
							| 14 | 13 | biimpar |  |-  ( ( F e. Word RR /\ F =/= (/) ) -> ( # ` F ) =/= 0 ) | 
						
							| 15 | 11 14 | sylbi |  |-  ( F e. ( Word RR \ { (/) } ) -> ( # ` F ) =/= 0 ) | 
						
							| 16 |  | elnnne0 |  |-  ( ( # ` F ) e. NN <-> ( ( # ` F ) e. NN0 /\ ( # ` F ) =/= 0 ) ) | 
						
							| 17 | 10 15 16 | sylanbrc |  |-  ( F e. ( Word RR \ { (/) } ) -> ( # ` F ) e. NN ) | 
						
							| 18 | 17 | adantr |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( # ` F ) e. NN ) | 
						
							| 19 |  | nnm1nn0 |  |-  ( ( # ` F ) e. NN -> ( ( # ` F ) - 1 ) e. NN0 ) | 
						
							| 20 | 18 19 | syl |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( ( # ` F ) - 1 ) e. NN0 ) | 
						
							| 21 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 22 | 20 21 | eleqtrdi |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( ( # ` F ) - 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 23 |  | ccatws1cl |  |-  ( ( F e. Word RR /\ K e. RR ) -> ( F ++ <" K "> ) e. Word RR ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ( F e. Word RR /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> ( F ++ <" K "> ) e. Word RR ) | 
						
							| 25 |  | wrdf |  |-  ( ( F ++ <" K "> ) e. Word RR -> ( F ++ <" K "> ) : ( 0 ..^ ( # ` ( F ++ <" K "> ) ) ) --> RR ) | 
						
							| 26 | 24 25 | syl |  |-  ( ( ( F e. Word RR /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> ( F ++ <" K "> ) : ( 0 ..^ ( # ` ( F ++ <" K "> ) ) ) --> RR ) | 
						
							| 27 | 9 | nn0zd |  |-  ( F e. Word RR -> ( # ` F ) e. ZZ ) | 
						
							| 28 |  | fzoval |  |-  ( ( # ` F ) e. ZZ -> ( 0 ..^ ( # ` F ) ) = ( 0 ... ( ( # ` F ) - 1 ) ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( F e. Word RR -> ( 0 ..^ ( # ` F ) ) = ( 0 ... ( ( # ` F ) - 1 ) ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( F e. Word RR /\ K e. RR ) -> ( 0 ..^ ( # ` F ) ) = ( 0 ... ( ( # ` F ) - 1 ) ) ) | 
						
							| 31 |  | fzossfz |  |-  ( 0 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) | 
						
							| 32 | 30 31 | eqsstrrdi |  |-  ( ( F e. Word RR /\ K e. RR ) -> ( 0 ... ( ( # ` F ) - 1 ) ) C_ ( 0 ... ( # ` F ) ) ) | 
						
							| 33 |  | s1cl |  |-  ( K e. RR -> <" K "> e. Word RR ) | 
						
							| 34 |  | ccatlen |  |-  ( ( F e. Word RR /\ <" K "> e. Word RR ) -> ( # ` ( F ++ <" K "> ) ) = ( ( # ` F ) + ( # ` <" K "> ) ) ) | 
						
							| 35 | 33 34 | sylan2 |  |-  ( ( F e. Word RR /\ K e. RR ) -> ( # ` ( F ++ <" K "> ) ) = ( ( # ` F ) + ( # ` <" K "> ) ) ) | 
						
							| 36 |  | s1len |  |-  ( # ` <" K "> ) = 1 | 
						
							| 37 | 36 | oveq2i |  |-  ( ( # ` F ) + ( # ` <" K "> ) ) = ( ( # ` F ) + 1 ) | 
						
							| 38 | 35 37 | eqtrdi |  |-  ( ( F e. Word RR /\ K e. RR ) -> ( # ` ( F ++ <" K "> ) ) = ( ( # ` F ) + 1 ) ) | 
						
							| 39 | 38 | oveq2d |  |-  ( ( F e. Word RR /\ K e. RR ) -> ( 0 ..^ ( # ` ( F ++ <" K "> ) ) ) = ( 0 ..^ ( ( # ` F ) + 1 ) ) ) | 
						
							| 40 | 27 | adantr |  |-  ( ( F e. Word RR /\ K e. RR ) -> ( # ` F ) e. ZZ ) | 
						
							| 41 | 40 | peano2zd |  |-  ( ( F e. Word RR /\ K e. RR ) -> ( ( # ` F ) + 1 ) e. ZZ ) | 
						
							| 42 |  | fzoval |  |-  ( ( ( # ` F ) + 1 ) e. ZZ -> ( 0 ..^ ( ( # ` F ) + 1 ) ) = ( 0 ... ( ( ( # ` F ) + 1 ) - 1 ) ) ) | 
						
							| 43 | 41 42 | syl |  |-  ( ( F e. Word RR /\ K e. RR ) -> ( 0 ..^ ( ( # ` F ) + 1 ) ) = ( 0 ... ( ( ( # ` F ) + 1 ) - 1 ) ) ) | 
						
							| 44 | 9 | nn0cnd |  |-  ( F e. Word RR -> ( # ` F ) e. CC ) | 
						
							| 45 |  | 1cnd |  |-  ( F e. Word RR -> 1 e. CC ) | 
						
							| 46 | 44 45 | pncand |  |-  ( F e. Word RR -> ( ( ( # ` F ) + 1 ) - 1 ) = ( # ` F ) ) | 
						
							| 47 | 46 | adantr |  |-  ( ( F e. Word RR /\ K e. RR ) -> ( ( ( # ` F ) + 1 ) - 1 ) = ( # ` F ) ) | 
						
							| 48 | 47 | oveq2d |  |-  ( ( F e. Word RR /\ K e. RR ) -> ( 0 ... ( ( ( # ` F ) + 1 ) - 1 ) ) = ( 0 ... ( # ` F ) ) ) | 
						
							| 49 | 39 43 48 | 3eqtrd |  |-  ( ( F e. Word RR /\ K e. RR ) -> ( 0 ..^ ( # ` ( F ++ <" K "> ) ) ) = ( 0 ... ( # ` F ) ) ) | 
						
							| 50 | 32 49 | sseqtrrd |  |-  ( ( F e. Word RR /\ K e. RR ) -> ( 0 ... ( ( # ` F ) - 1 ) ) C_ ( 0 ..^ ( # ` ( F ++ <" K "> ) ) ) ) | 
						
							| 51 | 50 | sselda |  |-  ( ( ( F e. Word RR /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> i e. ( 0 ..^ ( # ` ( F ++ <" K "> ) ) ) ) | 
						
							| 52 | 26 51 | ffvelcdmd |  |-  ( ( ( F e. Word RR /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> ( ( F ++ <" K "> ) ` i ) e. RR ) | 
						
							| 53 | 8 52 | sylanl1 |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> ( ( F ++ <" K "> ) ` i ) e. RR ) | 
						
							| 54 | 53 | rexrd |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> ( ( F ++ <" K "> ) ` i ) e. RR* ) | 
						
							| 55 |  | sgncl |  |-  ( ( ( F ++ <" K "> ) ` i ) e. RR* -> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) e. { -u 1 , 0 , 1 } ) | 
						
							| 56 | 54 55 | syl |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) e. { -u 1 , 0 , 1 } ) | 
						
							| 57 | 1 2 | signswplusg |  |-  .+^ = ( +g ` W ) | 
						
							| 58 |  | rexr |  |-  ( K e. RR -> K e. RR* ) | 
						
							| 59 |  | sgncl |  |-  ( K e. RR* -> ( sgn ` K ) e. { -u 1 , 0 , 1 } ) | 
						
							| 60 | 58 59 | syl |  |-  ( K e. RR -> ( sgn ` K ) e. { -u 1 , 0 , 1 } ) | 
						
							| 61 | 60 | adantl |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( sgn ` K ) e. { -u 1 , 0 , 1 } ) | 
						
							| 62 |  | id |  |-  ( i = ( ( ( # ` F ) - 1 ) + 1 ) -> i = ( ( ( # ` F ) - 1 ) + 1 ) ) | 
						
							| 63 | 44 45 | npcand |  |-  ( F e. Word RR -> ( ( ( # ` F ) - 1 ) + 1 ) = ( # ` F ) ) | 
						
							| 64 | 63 | adantr |  |-  ( ( F e. Word RR /\ K e. RR ) -> ( ( ( # ` F ) - 1 ) + 1 ) = ( # ` F ) ) | 
						
							| 65 | 62 64 | sylan9eqr |  |-  ( ( ( F e. Word RR /\ K e. RR ) /\ i = ( ( ( # ` F ) - 1 ) + 1 ) ) -> i = ( # ` F ) ) | 
						
							| 66 | 65 | fveq2d |  |-  ( ( ( F e. Word RR /\ K e. RR ) /\ i = ( ( ( # ` F ) - 1 ) + 1 ) ) -> ( ( F ++ <" K "> ) ` i ) = ( ( F ++ <" K "> ) ` ( # ` F ) ) ) | 
						
							| 67 |  | ccatws1ls |  |-  ( ( F e. Word RR /\ K e. RR ) -> ( ( F ++ <" K "> ) ` ( # ` F ) ) = K ) | 
						
							| 68 | 67 | adantr |  |-  ( ( ( F e. Word RR /\ K e. RR ) /\ i = ( ( ( # ` F ) - 1 ) + 1 ) ) -> ( ( F ++ <" K "> ) ` ( # ` F ) ) = K ) | 
						
							| 69 | 66 68 | eqtrd |  |-  ( ( ( F e. Word RR /\ K e. RR ) /\ i = ( ( ( # ` F ) - 1 ) + 1 ) ) -> ( ( F ++ <" K "> ) ` i ) = K ) | 
						
							| 70 | 8 69 | sylanl1 |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ i = ( ( ( # ` F ) - 1 ) + 1 ) ) -> ( ( F ++ <" K "> ) ` i ) = K ) | 
						
							| 71 | 70 | fveq2d |  |-  ( ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) /\ i = ( ( ( # ` F ) - 1 ) + 1 ) ) -> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) = ( sgn ` K ) ) | 
						
							| 72 | 5 7 22 56 57 61 71 | gsumnunsn |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( W gsum ( i e. ( 0 ... ( ( ( # ` F ) - 1 ) + 1 ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) = ( ( W gsum ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) .+^ ( sgn ` K ) ) ) | 
						
							| 73 | 8 63 | syl |  |-  ( F e. ( Word RR \ { (/) } ) -> ( ( ( # ` F ) - 1 ) + 1 ) = ( # ` F ) ) | 
						
							| 74 | 73 | adantr |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( ( ( # ` F ) - 1 ) + 1 ) = ( # ` F ) ) | 
						
							| 75 | 74 | oveq2d |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( 0 ... ( ( ( # ` F ) - 1 ) + 1 ) ) = ( 0 ... ( # ` F ) ) ) | 
						
							| 76 | 75 | mpteq1d |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( i e. ( 0 ... ( ( ( # ` F ) - 1 ) + 1 ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) = ( i e. ( 0 ... ( # ` F ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) | 
						
							| 77 | 76 | oveq2d |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( W gsum ( i e. ( 0 ... ( ( ( # ` F ) - 1 ) + 1 ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) = ( W gsum ( i e. ( 0 ... ( # ` F ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) ) | 
						
							| 78 |  | simpll |  |-  ( ( ( F e. Word RR /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> F e. Word RR ) | 
						
							| 79 | 33 | ad2antlr |  |-  ( ( ( F e. Word RR /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> <" K "> e. Word RR ) | 
						
							| 80 | 30 | eleq2d |  |-  ( ( F e. Word RR /\ K e. RR ) -> ( i e. ( 0 ..^ ( # ` F ) ) <-> i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) ) | 
						
							| 81 | 80 | biimpar |  |-  ( ( ( F e. Word RR /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> i e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 82 |  | ccatval1 |  |-  ( ( F e. Word RR /\ <" K "> e. Word RR /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F ++ <" K "> ) ` i ) = ( F ` i ) ) | 
						
							| 83 | 78 79 81 82 | syl3anc |  |-  ( ( ( F e. Word RR /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> ( ( F ++ <" K "> ) ` i ) = ( F ` i ) ) | 
						
							| 84 | 83 | fveq2d |  |-  ( ( ( F e. Word RR /\ K e. RR ) /\ i e. ( 0 ... ( ( # ` F ) - 1 ) ) ) -> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) = ( sgn ` ( F ` i ) ) ) | 
						
							| 85 | 84 | mpteq2dva |  |-  ( ( F e. Word RR /\ K e. RR ) -> ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) = ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( F ` i ) ) ) ) | 
						
							| 86 | 8 85 | sylan |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) = ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( F ` i ) ) ) ) | 
						
							| 87 | 86 | oveq2d |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( W gsum ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) = ( W gsum ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( F ` i ) ) ) ) ) | 
						
							| 88 | 87 | oveq1d |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( ( W gsum ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) .+^ ( sgn ` K ) ) = ( ( W gsum ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( F ` i ) ) ) ) .+^ ( sgn ` K ) ) ) | 
						
							| 89 | 72 77 88 | 3eqtr3d |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( W gsum ( i e. ( 0 ... ( # ` F ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) = ( ( W gsum ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( F ` i ) ) ) ) .+^ ( sgn ` K ) ) ) | 
						
							| 90 |  | eqid |  |-  ( # ` F ) = ( # ` F ) | 
						
							| 91 | 90 | olci |  |-  ( ( # ` F ) e. ( 0 ..^ ( # ` F ) ) \/ ( # ` F ) = ( # ` F ) ) | 
						
							| 92 | 9 21 | eleqtrdi |  |-  ( F e. Word RR -> ( # ` F ) e. ( ZZ>= ` 0 ) ) | 
						
							| 93 |  | fzosplitsni |  |-  ( ( # ` F ) e. ( ZZ>= ` 0 ) -> ( ( # ` F ) e. ( 0 ..^ ( ( # ` F ) + 1 ) ) <-> ( ( # ` F ) e. ( 0 ..^ ( # ` F ) ) \/ ( # ` F ) = ( # ` F ) ) ) ) | 
						
							| 94 | 92 93 | syl |  |-  ( F e. Word RR -> ( ( # ` F ) e. ( 0 ..^ ( ( # ` F ) + 1 ) ) <-> ( ( # ` F ) e. ( 0 ..^ ( # ` F ) ) \/ ( # ` F ) = ( # ` F ) ) ) ) | 
						
							| 95 | 91 94 | mpbiri |  |-  ( F e. Word RR -> ( # ` F ) e. ( 0 ..^ ( ( # ` F ) + 1 ) ) ) | 
						
							| 96 | 95 | adantr |  |-  ( ( F e. Word RR /\ K e. RR ) -> ( # ` F ) e. ( 0 ..^ ( ( # ` F ) + 1 ) ) ) | 
						
							| 97 | 96 39 | eleqtrrd |  |-  ( ( F e. Word RR /\ K e. RR ) -> ( # ` F ) e. ( 0 ..^ ( # ` ( F ++ <" K "> ) ) ) ) | 
						
							| 98 | 1 2 3 4 | signstfval |  |-  ( ( ( F ++ <" K "> ) e. Word RR /\ ( # ` F ) e. ( 0 ..^ ( # ` ( F ++ <" K "> ) ) ) ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) = ( W gsum ( i e. ( 0 ... ( # ` F ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) ) | 
						
							| 99 | 23 97 98 | syl2anc |  |-  ( ( F e. Word RR /\ K e. RR ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) = ( W gsum ( i e. ( 0 ... ( # ` F ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) ) | 
						
							| 100 | 8 99 | sylan |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) = ( W gsum ( i e. ( 0 ... ( # ` F ) ) |-> ( sgn ` ( ( F ++ <" K "> ) ` i ) ) ) ) ) | 
						
							| 101 |  | fzo0end |  |-  ( ( # ` F ) e. NN -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 102 | 17 101 | syl |  |-  ( F e. ( Word RR \ { (/) } ) -> ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 103 | 1 2 3 4 | signstfval |  |-  ( ( F e. Word RR /\ ( ( # ` F ) - 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) = ( W gsum ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( F ` i ) ) ) ) ) | 
						
							| 104 | 8 102 103 | syl2anc |  |-  ( F e. ( Word RR \ { (/) } ) -> ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) = ( W gsum ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( F ` i ) ) ) ) ) | 
						
							| 105 | 104 | adantr |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) = ( W gsum ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( F ` i ) ) ) ) ) | 
						
							| 106 | 105 | oveq1d |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) .+^ ( sgn ` K ) ) = ( ( W gsum ( i e. ( 0 ... ( ( # ` F ) - 1 ) ) |-> ( sgn ` ( F ` i ) ) ) ) .+^ ( sgn ` K ) ) ) | 
						
							| 107 | 89 100 106 | 3eqtr4d |  |-  ( ( F e. ( Word RR \ { (/) } ) /\ K e. RR ) -> ( ( T ` ( F ++ <" K "> ) ) ` ( # ` F ) ) = ( ( ( T ` F ) ` ( ( # ` F ) - 1 ) ) .+^ ( sgn ` K ) ) ) |