Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) |
2 |
|
signsv.w |
⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } |
3 |
|
signsv.t |
⊢ 𝑇 = ( 𝑓 ∈ Word ℝ ↦ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) |
4 |
|
signsv.v |
⊢ 𝑉 = ( 𝑓 ∈ Word ℝ ↦ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ) |
5 |
1 2
|
signswbase |
⊢ { - 1 , 0 , 1 } = ( Base ‘ 𝑊 ) |
6 |
1 2
|
signswmnd |
⊢ 𝑊 ∈ Mnd |
7 |
6
|
a1i |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) → 𝑊 ∈ Mnd ) |
8 |
|
eldifi |
⊢ ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) → 𝐹 ∈ Word ℝ ) |
9 |
|
lencl |
⊢ ( 𝐹 ∈ Word ℝ → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
10 |
8 9
|
syl |
⊢ ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
11 |
|
eldifsn |
⊢ ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ↔ ( 𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅ ) ) |
12 |
|
hasheq0 |
⊢ ( 𝐹 ∈ Word ℝ → ( ( ♯ ‘ 𝐹 ) = 0 ↔ 𝐹 = ∅ ) ) |
13 |
12
|
necon3bid |
⊢ ( 𝐹 ∈ Word ℝ → ( ( ♯ ‘ 𝐹 ) ≠ 0 ↔ 𝐹 ≠ ∅ ) ) |
14 |
13
|
biimpar |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅ ) → ( ♯ ‘ 𝐹 ) ≠ 0 ) |
15 |
11 14
|
sylbi |
⊢ ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) → ( ♯ ‘ 𝐹 ) ≠ 0 ) |
16 |
|
elnnne0 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ≠ 0 ) ) |
17 |
10 15 16
|
sylanbrc |
⊢ ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
18 |
17
|
adantr |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
19 |
|
nnm1nn0 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 ) |
20 |
18 19
|
syl |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℕ0 ) |
21 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
22 |
20 21
|
eleqtrdi |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
23 |
|
ccatws1cl |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ∈ Word ℝ ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ∈ Word ℝ ) |
25 |
|
wrdf |
⊢ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ∈ Word ℝ → ( 𝐹 ++ 〈“ 𝐾 ”〉 ) : ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) ) ⟶ ℝ ) |
26 |
24 25
|
syl |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( 𝐹 ++ 〈“ 𝐾 ”〉 ) : ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) ) ⟶ ℝ ) |
27 |
9
|
nn0zd |
⊢ ( 𝐹 ∈ Word ℝ → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
28 |
|
fzoval |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
29 |
27 28
|
syl |
⊢ ( 𝐹 ∈ Word ℝ → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
31 |
|
fzossfz |
⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) |
32 |
30 31
|
eqsstrrdi |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
33 |
|
s1cl |
⊢ ( 𝐾 ∈ ℝ → 〈“ 𝐾 ”〉 ∈ Word ℝ ) |
34 |
|
ccatlen |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 〈“ 𝐾 ”〉 ∈ Word ℝ ) → ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 〈“ 𝐾 ”〉 ) ) ) |
35 |
33 34
|
sylan2 |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 〈“ 𝐾 ”〉 ) ) ) |
36 |
|
s1len |
⊢ ( ♯ ‘ 〈“ 𝐾 ”〉 ) = 1 |
37 |
36
|
oveq2i |
⊢ ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ 〈“ 𝐾 ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) |
38 |
35 37
|
eqtrdi |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
39 |
38
|
oveq2d |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
40 |
27
|
adantr |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
41 |
40
|
peano2zd |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( ( ♯ ‘ 𝐹 ) + 1 ) ∈ ℤ ) |
42 |
|
fzoval |
⊢ ( ( ( ♯ ‘ 𝐹 ) + 1 ) ∈ ℤ → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) = ( 0 ... ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) ) ) |
43 |
41 42
|
syl |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) = ( 0 ... ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) ) ) |
44 |
9
|
nn0cnd |
⊢ ( 𝐹 ∈ Word ℝ → ( ♯ ‘ 𝐹 ) ∈ ℂ ) |
45 |
|
1cnd |
⊢ ( 𝐹 ∈ Word ℝ → 1 ∈ ℂ ) |
46 |
44 45
|
pncand |
⊢ ( 𝐹 ∈ Word ℝ → ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) = ( ♯ ‘ 𝐹 ) ) |
47 |
46
|
adantr |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) = ( ♯ ‘ 𝐹 ) ) |
48 |
47
|
oveq2d |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( 0 ... ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
49 |
39 43 48
|
3eqtrd |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
50 |
32 49
|
sseqtrrd |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) ) ) |
51 |
50
|
sselda |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) ) ) |
52 |
26 51
|
ffvelrnd |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ∈ ℝ ) |
53 |
8 52
|
sylanl1 |
⊢ ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ∈ ℝ ) |
54 |
53
|
rexrd |
⊢ ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ∈ ℝ* ) |
55 |
|
sgncl |
⊢ ( ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ∈ ℝ* → ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ∈ { - 1 , 0 , 1 } ) |
56 |
54 55
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ∈ { - 1 , 0 , 1 } ) |
57 |
1 2
|
signswplusg |
⊢ ⨣ = ( +g ‘ 𝑊 ) |
58 |
|
rexr |
⊢ ( 𝐾 ∈ ℝ → 𝐾 ∈ ℝ* ) |
59 |
|
sgncl |
⊢ ( 𝐾 ∈ ℝ* → ( sgn ‘ 𝐾 ) ∈ { - 1 , 0 , 1 } ) |
60 |
58 59
|
syl |
⊢ ( 𝐾 ∈ ℝ → ( sgn ‘ 𝐾 ) ∈ { - 1 , 0 , 1 } ) |
61 |
60
|
adantl |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) → ( sgn ‘ 𝐾 ) ∈ { - 1 , 0 , 1 } ) |
62 |
|
id |
⊢ ( 𝑖 = ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) → 𝑖 = ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) |
63 |
44 45
|
npcand |
⊢ ( 𝐹 ∈ Word ℝ → ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) = ( ♯ ‘ 𝐹 ) ) |
64 |
63
|
adantr |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) = ( ♯ ‘ 𝐹 ) ) |
65 |
62 64
|
sylan9eqr |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) ∧ 𝑖 = ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) → 𝑖 = ( ♯ ‘ 𝐹 ) ) |
66 |
65
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) ∧ 𝑖 = ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) → ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) = ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ ( ♯ ‘ 𝐹 ) ) ) |
67 |
|
ccatws1ls |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ ( ♯ ‘ 𝐹 ) ) = 𝐾 ) |
68 |
67
|
adantr |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) ∧ 𝑖 = ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) → ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ ( ♯ ‘ 𝐹 ) ) = 𝐾 ) |
69 |
66 68
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) ∧ 𝑖 = ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) → ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) = 𝐾 ) |
70 |
8 69
|
sylanl1 |
⊢ ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) ∧ 𝑖 = ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) → ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) = 𝐾 ) |
71 |
70
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) ∧ 𝑖 = ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) → ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) = ( sgn ‘ 𝐾 ) ) |
72 |
5 7 22 56 57 61 71
|
gsumnunsn |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) ↦ ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ) ) = ( ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↦ ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ) ) ⨣ ( sgn ‘ 𝐾 ) ) ) |
73 |
8 63
|
syl |
⊢ ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) → ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) = ( ♯ ‘ 𝐹 ) ) |
74 |
73
|
adantr |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) → ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) = ( ♯ ‘ 𝐹 ) ) |
75 |
74
|
oveq2d |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) → ( 0 ... ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
76 |
75
|
mpteq1d |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) → ( 𝑖 ∈ ( 0 ... ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) ↦ ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ) = ( 𝑖 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ↦ ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ) ) |
77 |
76
|
oveq2d |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) ↦ ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ) ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ↦ ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ) ) ) |
78 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → 𝐹 ∈ Word ℝ ) |
79 |
33
|
ad2antlr |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → 〈“ 𝐾 ”〉 ∈ Word ℝ ) |
80 |
30
|
eleq2d |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
81 |
80
|
biimpar |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
82 |
|
ccatval1 |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 〈“ 𝐾 ”〉 ∈ Word ℝ ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) |
83 |
78 79 81 82
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) = ( 𝐹 ‘ 𝑖 ) ) |
84 |
83
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) ∧ 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) = ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
85 |
84
|
mpteq2dva |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↦ ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ) = ( 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↦ ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
86 |
8 85
|
sylan |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) → ( 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↦ ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ) = ( 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↦ ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |
87 |
86
|
oveq2d |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↦ ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ) ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↦ ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
88 |
87
|
oveq1d |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) → ( ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↦ ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ) ) ⨣ ( sgn ‘ 𝐾 ) ) = ( ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↦ ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ⨣ ( sgn ‘ 𝐾 ) ) ) |
89 |
72 77 88
|
3eqtr3d |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ↦ ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ) ) = ( ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↦ ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ⨣ ( sgn ‘ 𝐾 ) ) ) |
90 |
|
eqid |
⊢ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝐹 ) |
91 |
90
|
olci |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∨ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝐹 ) ) |
92 |
9 21
|
eleqtrdi |
⊢ ( 𝐹 ∈ Word ℝ → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 0 ) ) |
93 |
|
fzosplitsni |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 0 ) → ( ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ↔ ( ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∨ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝐹 ) ) ) ) |
94 |
92 93
|
syl |
⊢ ( 𝐹 ∈ Word ℝ → ( ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ↔ ( ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∨ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝐹 ) ) ) ) |
95 |
91 94
|
mpbiri |
⊢ ( 𝐹 ∈ Word ℝ → ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
96 |
95
|
adantr |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
97 |
96 39
|
eleqtrrd |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) ) ) |
98 |
1 2 3 4
|
signstfval |
⊢ ( ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ∈ Word ℝ ∧ ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) ) ) → ( ( 𝑇 ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ↦ ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ) ) ) |
99 |
23 97 98
|
syl2anc |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ) → ( ( 𝑇 ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ↦ ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ) ) ) |
100 |
8 99
|
sylan |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) → ( ( 𝑇 ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ↦ ( sgn ‘ ( ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ‘ 𝑖 ) ) ) ) ) |
101 |
|
fzo0end |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
102 |
17 101
|
syl |
⊢ ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
103 |
1 2 3 4
|
signstfval |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↦ ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
104 |
8 102 103
|
syl2anc |
⊢ ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) → ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↦ ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
105 |
104
|
adantr |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) → ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↦ ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
106 |
105
|
oveq1d |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) → ( ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⨣ ( sgn ‘ 𝐾 ) ) = ( ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↦ ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ⨣ ( sgn ‘ 𝐾 ) ) ) |
107 |
89 100 106
|
3eqtr4d |
⊢ ( ( 𝐹 ∈ ( Word ℝ ∖ { ∅ } ) ∧ 𝐾 ∈ ℝ ) → ( ( 𝑇 ‘ ( 𝐹 ++ 〈“ 𝐾 ”〉 ) ) ‘ ( ♯ ‘ 𝐹 ) ) = ( ( ( 𝑇 ‘ 𝐹 ) ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⨣ ( sgn ‘ 𝐾 ) ) ) |