Metamath Proof Explorer


Theorem signstfval

Description: Value of the zero-skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Hypotheses signsv.p âŠĒ âĻĢ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } â†Ķ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
signsv.w âŠĒ 𝑊 = { âŸĻ ( Base ‘ ndx ) , { - 1 , 0 , 1 } âŸĐ , âŸĻ ( +g ‘ ndx ) , âĻĢ âŸĐ }
signsv.t âŠĒ 𝑇 = ( 𝑓 ∈ Word ℝ â†Ķ ( 𝑛 ∈ ( 0 ..^ ( â™Ŋ ‘ 𝑓 ) ) â†Ķ ( 𝑊 ÎĢg ( 𝑖 ∈ ( 0 ... 𝑛 ) â†Ķ ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) )
signsv.v âŠĒ 𝑉 = ( 𝑓 ∈ Word ℝ â†Ķ ÎĢ ð‘— ∈ ( 1 ..^ ( â™Ŋ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) )
Assertion signstfval ( ( ðđ ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( â™Ŋ ‘ ðđ ) ) ) → ( ( 𝑇 ‘ ðđ ) ‘ 𝑁 ) = ( 𝑊 ÎĢg ( 𝑖 ∈ ( 0 ... 𝑁 ) â†Ķ ( sgn ‘ ( ðđ ‘ 𝑖 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 signsv.p âŠĒ âĻĢ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } â†Ķ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
2 signsv.w âŠĒ 𝑊 = { âŸĻ ( Base ‘ ndx ) , { - 1 , 0 , 1 } âŸĐ , âŸĻ ( +g ‘ ndx ) , âĻĢ âŸĐ }
3 signsv.t âŠĒ 𝑇 = ( 𝑓 ∈ Word ℝ â†Ķ ( 𝑛 ∈ ( 0 ..^ ( â™Ŋ ‘ 𝑓 ) ) â†Ķ ( 𝑊 ÎĢg ( 𝑖 ∈ ( 0 ... 𝑛 ) â†Ķ ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) )
4 signsv.v âŠĒ 𝑉 = ( 𝑓 ∈ Word ℝ â†Ķ ÎĢ ð‘— ∈ ( 1 ..^ ( â™Ŋ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) )
5 1 2 3 4 signstfv âŠĒ ( ðđ ∈ Word ℝ → ( 𝑇 ‘ ðđ ) = ( 𝑛 ∈ ( 0 ..^ ( â™Ŋ ‘ ðđ ) ) â†Ķ ( 𝑊 ÎĢg ( 𝑖 ∈ ( 0 ... 𝑛 ) â†Ķ ( sgn ‘ ( ðđ ‘ 𝑖 ) ) ) ) ) )
6 5 adantr âŠĒ ( ( ðđ ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( â™Ŋ ‘ ðđ ) ) ) → ( 𝑇 ‘ ðđ ) = ( 𝑛 ∈ ( 0 ..^ ( â™Ŋ ‘ ðđ ) ) â†Ķ ( 𝑊 ÎĢg ( 𝑖 ∈ ( 0 ... 𝑛 ) â†Ķ ( sgn ‘ ( ðđ ‘ 𝑖 ) ) ) ) ) )
7 simpr âŠĒ ( ( ( ðđ ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( â™Ŋ ‘ ðđ ) ) ) ∧ 𝑛 = 𝑁 ) → 𝑛 = 𝑁 )
8 7 oveq2d âŠĒ ( ( ( ðđ ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( â™Ŋ ‘ ðđ ) ) ) ∧ 𝑛 = 𝑁 ) → ( 0 ... 𝑛 ) = ( 0 ... 𝑁 ) )
9 8 mpteq1d âŠĒ ( ( ( ðđ ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( â™Ŋ ‘ ðđ ) ) ) ∧ 𝑛 = 𝑁 ) → ( 𝑖 ∈ ( 0 ... 𝑛 ) â†Ķ ( sgn ‘ ( ðđ ‘ 𝑖 ) ) ) = ( 𝑖 ∈ ( 0 ... 𝑁 ) â†Ķ ( sgn ‘ ( ðđ ‘ 𝑖 ) ) ) )
10 9 oveq2d âŠĒ ( ( ( ðđ ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( â™Ŋ ‘ ðđ ) ) ) ∧ 𝑛 = 𝑁 ) → ( 𝑊 ÎĢg ( 𝑖 ∈ ( 0 ... 𝑛 ) â†Ķ ( sgn ‘ ( ðđ ‘ 𝑖 ) ) ) ) = ( 𝑊 ÎĢg ( 𝑖 ∈ ( 0 ... 𝑁 ) â†Ķ ( sgn ‘ ( ðđ ‘ 𝑖 ) ) ) ) )
11 simpr âŠĒ ( ( ðđ ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( â™Ŋ ‘ ðđ ) ) ) → 𝑁 ∈ ( 0 ..^ ( â™Ŋ ‘ ðđ ) ) )
12 ovexd âŠĒ ( ( ðđ ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( â™Ŋ ‘ ðđ ) ) ) → ( 𝑊 ÎĢg ( 𝑖 ∈ ( 0 ... 𝑁 ) â†Ķ ( sgn ‘ ( ðđ ‘ 𝑖 ) ) ) ) ∈ V )
13 6 10 11 12 fvmptd âŠĒ ( ( ðđ ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( â™Ŋ ‘ ðđ ) ) ) → ( ( 𝑇 ‘ ðđ ) ‘ 𝑁 ) = ( 𝑊 ÎĢg ( 𝑖 ∈ ( 0 ... 𝑁 ) â†Ķ ( sgn ‘ ( ðđ ‘ 𝑖 ) ) ) ) )