Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
⊢ ⨣ = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) ) |
2 |
|
signsv.w |
⊢ 𝑊 = { 〈 ( Base ‘ ndx ) , { - 1 , 0 , 1 } 〉 , 〈 ( +g ‘ ndx ) , ⨣ 〉 } |
3 |
|
signsv.t |
⊢ 𝑇 = ( 𝑓 ∈ Word ℝ ↦ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) |
4 |
|
signsv.v |
⊢ 𝑉 = ( 𝑓 ∈ Word ℝ ↦ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) ) |
5 |
1 2 3 4
|
signstfval |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) = ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
6 |
1 2
|
signswbase |
⊢ { - 1 , 0 , 1 } = ( Base ‘ 𝑊 ) |
7 |
1 2
|
signswmnd |
⊢ 𝑊 ∈ Mnd |
8 |
7
|
a1i |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑊 ∈ Mnd ) |
9 |
|
fzo0ssnn0 |
⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ℕ0 |
10 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
11 |
9 10
|
sseqtri |
⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( ℤ≥ ‘ 0 ) |
12 |
11
|
a1i |
⊢ ( 𝐹 ∈ Word ℝ → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( ℤ≥ ‘ 0 ) ) |
13 |
12
|
sselda |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
14 |
|
wrdf |
⊢ ( 𝐹 ∈ Word ℝ → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ ℝ ) |
15 |
14
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ ℝ ) |
16 |
|
fzssfzo |
⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 0 ... 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 0 ... 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
18 |
17
|
sselda |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
19 |
15 18
|
ffvelrnd |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ ℝ ) |
20 |
19
|
rexrd |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ ℝ* ) |
21 |
|
sgncl |
⊢ ( ( 𝐹 ‘ 𝑖 ) ∈ ℝ* → ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ { - 1 , 0 , 1 } ) |
22 |
20 21
|
syl |
⊢ ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑁 ) ) → ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ { - 1 , 0 , 1 } ) |
23 |
6 8 13 22
|
gsumncl |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑁 ) ↦ ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ∈ { - 1 , 0 , 1 } ) |
24 |
5 23
|
eqeltrd |
⊢ ( ( 𝐹 ∈ Word ℝ ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑇 ‘ 𝐹 ) ‘ 𝑁 ) ∈ { - 1 , 0 , 1 } ) |